A new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitation 1.48 and 4.96 μg.mL-1 respectively. Agoodprecision,low scattering point of the calibration graph and good accuracyin addition, FIA introduced a good linear range with acceptable sensitivity. High correlation coefficient (0.9996) was found. The proposed method was successfully applied to assay NIF and its pharmaceutical dosage also could be utilized for pharmaceutical routine analysis of the drug.
This study was aimed to develop an optimized Dy determination method using differential pulse voltammetry (DPV). The Plackett-Burman (PB) experimental design was used to select significant factors that affect the electrical current response, which were further optimized using the response surface method-central composite design (RSM-CCD). The type of electrolyte solution and amplitude modulation were found as two most significant factors, among the nine factors tested, which enhance the current response based on PB design. Further optimization using RSM-CCD shows that the optimum values for the tw
... Show MoreA new, simple and sensitive spectrophotometric method was described for the determination of famotidine (FAM) as a pure material and in pharmaceutical formulation. This method was based on diazotization and coupling reaction between famotidine and diazotized solution of metochlopramide hydrochloride (DMPH) in the presence of phosphate buffer solution to give a compound of azo dye having orange color soluble in water with high absorptivity at a wave length of 478 nm. The data shows that FAM and DMPH combine in the molar ratio of 1:1 at PH 7.0 .The method obeys Beer's law over concentration range of 1-40 ?g.ml-1 of famotidine with a correlation coefficient of 0.9955 and a detection limit of 0.10 ?g.ml-1. The apparent molar absorptivity re
... Show MoreA new spectrophotometric method has been developed for the assay of olanzapine (OLN.) in pure and dosage forms. The method is based on the diazocoupling of (OLN.) with diazotized p-nitroaniline in alkaline medium to form a stable brown colored water-soluble azo dye with a maximum absorption at 405 nm. The variables that affect the completion of reaction have been carefully optimized. Beer’s law is obeyed over the concentration range of (0.5-45.0 μg.mL-1) with a molar absorptivity of 1.5777×104 L.mol-1.cm-1. The limit of detection was 0.3148 μg.mL-1 and Sandell’s sensitivity value was 0.0198 μg.cm-2. The propose
... Show MoreA rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium is studied. The method is based on the interaction of chromium with indigo carmine dye in acidic medium and the presence of oxalates as a catalyst for interaction, and after studying the absorption spectrum of the solution resulting observed decrease in the intensity of the absorption. As happened (Bleaching) for color dye, this palace and directly proportional to the chromium (VI) amount was measured intensity of the absorption versus solution was figurehead at a wavelength of 610 nm. A plot of absorbance with chromium (VI) concentration gives a straight line indicating that Beer’s law has been obeyed over the range of 0.5
... Show MoreA rapid, sensitive and selective spectrophotometric method was developed for determination of sulfathiazole (STHZ) in aqueous solution. The method is based on the oxidative coupling reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH) in a basic medium (pH 10.9) in the presence of potassium periodate to produce an intense orange colour, soluble in water , stable product and absorbs at 492 nm. Beer's law was in the linear range 2.0-28.0 μg/ml of sulfathiazole, the molar absorptivity, Sandellʼs sensitivity index and detection limit were 1.1437 ×104 liter. mol-1.cm-1,0.0223 μg.cm-2 and 0.1274 μg/ml respectively. The RSD value was 0.75 - 1.12 % depending on the concentration. This method was applied successfu
... Show MoreA simple, rapid, accurate and sensitive spectrophotometric method has been developed for the determing carbamate pesticides in both pure and water samples. The method is appropriate for the determination of carbofuran in the presence of other ingredients that are usually available in dosage forms. The effect of organic solvents on the spectrophotometric properties of the azo dye and the structure of the resulting product have also been worked out and it is found to be 1:1 benzidine :carbofuran. The method can be successfully applied to determination of carbofuran in water samples. The method is based on diazotization of Benzidine (4, 4 – diamino biphenyl) with sodium nitrite and hydrochloric acid followed by coupling with carbofuran
... Show MoreA direct spectrophotometric method has been developed for the
determination of nitrite in aqueous solution. The method is based on the reaction of the nitritw ion with an acidified anline solution from diazonium cation , which is subsequently coupled ·with 4,6 - dihydroxy- 2- mercapto pyrimidine to from yellow colored and water
- soluble intense azo dye with maximum absorption at 416nm . A
graph of absorbance versus concentration shows that Bee's
... Show MoreA simple , sensitive and accurate spectrophotometric method for the trace determination of bismuth (III) has been developed .This method is based on the reaction of bismuth (III) with arsenazo(III) in acid solution (pH=1.9) to form a blue water soluble complex which exhibits maximum absorption at 612nm .Beer's law is obeyed over the concentration range of 2-85 ?g bismuth (III) in a final volume of 20 mL( i.e. 0.1 – 4.25?g.mL-1) with a correlation coefficient of (0.9981) and molar absorptivity 1.9×104 L.mol-1.cm-1 . The limit of detection (LOD) and the limit of quantification (LOQ) are 0.0633 and 0.0847 ?g.mL-1 , respectively . Under optimum conditions,the stoichiometry of the reaction between bismuth (III) and arsenazo(III) r
... Show More