The research study focuses on the efficient and accurate detection and determination of cobalt ions. The detection method involves the formation of brilliant green aggregates with calcium hexacyanoferrate in the presence of nitric acid. (Nagham-four sources of white snow light-emitting diodes arranged in three rows corresponding to three detectors) (The NAG-4SX3-3D Analyzer is an optical, chemical, electronic, and detection tool that receives a cumulative signal (no amplification is required). The total distance travelled is 760 mm with regard to YZ(mV) - tsec (dmm). It was selected for its precise calculation of the energy transducer profile. The linear range for measuring cobalt (II) ions is 0.05 to 20 mM. For concentrations of 5 and 10 mM, the relative standard deviation (RSD) for eight repeated intraday measurements is less than 0.36%. The calibration graph gradually dilutes the lowest concentration to determine the limit of detection (LOD) of 349.236 ng per analyte sample. The correlation coefficient (r) for the linear dynamic range is 0.9893, and the linearity is 97.80% (R2 %). The results of the proposed method were compared to the already-available UV-spectrophotometric technique at a wavelength of 510 nm and found to be comparable..
A cost-effective and efficient detector was created to conduct thorough turbidimetric measurements by reaction of Co (II) ion with calcium ferro cyanide to form bright green particulate, using the method of continuous flow injection analysis, the use of NAG-5SX1-1D-SSP Analyzer in determining cobalt (II) ion in a test for the validity of the new design. The NAG-5SX1-1D-SSP Analyzer is composed of five irradiation sources of white snow leds having the diameter of 10 mm with one solar cell of 55 mm length, 13.5 mm width. Using a selector switch to select the optimum voltage to be used which was 2.7 VDC. Under conditions of optimization, cobalt (II) ion was determined at 0.005–20 mmol. L–1(n = 23) while linearity dynamic range 0.005–7 mm
... Show MoreThe present study employed the NAG-4SX3-3D analyzer to precisely measure the energy response of the sensor. The goal was to enhance the understanding of this technology by providing expert information about the device. This technology offers an economical, quick, accurate, and sensitive approach. By utilizing the turbidity method, Cyproheptadine hydrochloride (CPH) was quantified in pharmaceutical samples without the need for additional substances. CPH is expected to undergo a direct reaction with calcium hexacyanoferrate, resulting in the formation of white precipitates. The linear range for CPH measurement falls within the range of (0.008–30) mM. The relative standard deviation (RSD) for six repetitions at concentrations of (6 and
... Show MoreThe research work represent a fast and simple method for the determination of methionine using chemiluminescence for the methionine-sodium hydroxide-luminol for the generation of a chemiluminesecent derivative of luminal. The emission was measured by continuous flow analysis made sample size of 83µL was used.Response versus concentration extended from 0.2-20 mM.L-1 with a percentage linearity of 96.17% or with 99.17% percentage of linearity for the range 0.6-20 mM.L-1. Reaching to a L.O.D. at (S/N=3) for 5 µM.L-1 from the gradual dilution for the minimum concentration in the calibration graph with a repeatability of less than 0.5% (n=10). A comparison was made between the new developed method with the classical method for the spectrophoto
... Show MoreA new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show MoreThis work includes design, implementation and testing of a microcontroller – based spectrum analyzer system. Both hardware and software structures are built to verify the main functions that are required by such system. Their design utilizes the permissible and available tools to achieve the main functions of the system in such a way to be modularly permitting any adaptation for a specific changing in the application environment. The analysis technique, mainly, depends on the Fourier analysis based methods of spectral analysis with the necessary required preconditioning processes. The software required for waveform analysis has been prepared. The spectrum of the waveform has been displayed, and the instrument accuracy has been checked.
... Show MoreThe first flow injection spectrophotometric method is characterized by its speed and sensitivity which have been developed for the determination of promethazine-HCl in pure and pharmaceutical preparation. It is based on the in situ detection of colored cationic radicals formed via oxidation of the drug with sodium persulphate to pinkish-red species and the same species was determined by using homemade Ayah 3SX3-3D solar flow injection photometer. Optimum conditions were obtained by using the high intensive green light emitted diode as a source. Linear dynamic range for the absorbance versus promethazine-HCl concentration was 0-7 mmol.L-1, with the correlation coefficient (r) was 0.9904 while the percentage linearity (r2%) was 98.09%. the L.
... Show MoreA new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio
... Show More