Preferred Language
Articles
/
jkmc-95
Basal cell markers:34BE12 and p63, improving detection of basal cells in atypical prostatic lesions
...Show More Authors

Background: The diagnosis of prostatic pathology may be of challenging , as some  difficult and suspected, atypical  cases may lack basal cell layer by routine H&E sections . Antibodies against 34BE12(HMW-CK) and p63 aid the diagnosis of such cases , to distinguish benign from  malignant prostatic lesions.

Objective: to identify basal cells in atypical prostatic lesions ,and distinguish benign from malignant prostatic lesions.

Type of the study:  A retro-spective  study.

Methods:  115cases of  paraffin embedded prostatic tissue blocks ,diagnosed as : 76 cases were benign prostatic hyperplasia( BPH) , 9 cases were  high grade –prostatic intraepithelial neoplasia (HG-PIN) , and 30 cases were prostatic carcinoma(PCa) .Sections from each blocks were prepared for immunostaining with 34BE12 and p63.

Results : basal cells were detected in cases of BPH , and HG-PIN , and absent  in all cases of prostatic carcinoma ,using basal cell markers . Negative benign glands(>2) were found in 71.6% and 38.2%  for   BPH  and 57.1% and 55.6% for HG-PIN immunostained  with high molecular weight cytokeratin (34BE12) and p63 , respectively, and significantly reduced to 9.0% and 11.1% for BPH and HG-PIN, respectively  with combined using of both markers .Conclusion : Combination of both   basal cell markers (34BE12 , p63) improving basal cell detection in atypical ,suspected prostatic lesions and distinguish benign from malignant lesions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
Facial deepfake performance evaluation based on three detection tools: MTCNN, Dlib, and MediaPipe
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method
...Show More Authors

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
An Approach Based on Decision Tree and Self-Organizing Map For Intrusion Detection
...Show More Authors

In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Transfer Learning Based Traffic Light Detection and Recognition Using CNN Inception-V3 Model
...Show More Authors

Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus Crossref
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Genetic Algorithm-Based Anisotropic Diffusion Filter and Clustering Algorithms for Thyroid Tumor Detection
...Show More Authors

Medical imaging is a technique that has been used for diagnosis and treatment of a large number of diseases. Therefore it has become necessary to conduct a good image processing to extract the finest desired result and information. In this study, genetic algorithm (GA)-based clustering technique (K-means and Fuzzy C Means (FCM)) were used to segment thyroid Computed Tomography (CT) images to an extraction thyroid tumor. Traditional GA, K-means and FCM algorithms were applied separately on the original images and on the enhanced image with Anisotropic Diffusion Filter (ADF). The resulting cluster centers from K-means and FCM were used as the initial population in GA for the implementation of GAK-Mean and GAFCM. Jaccard index was used to s

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Eco-friendly and Secure Data Center to Detection Compromised Devices Utilizing Swarm Approach
...Show More Authors

Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
The relationship between social capital and knowledge sharing and their impact on improving the educational service quality: an analytical study of the views of a sample of academic staffs in the government universities in the Kurdistan Region of Iraq
...Show More Authors

Abstract

This study aims to find the relationships between social capital (social network, social trust, shared goals) and knowledge sharing (knowledge Donating, knowledge collecting) as independent variables and their impact on improving the quality of educational services (academic staffs quality, Quality of teaching methods and study curriculums). This research is an important, because it attempts to identify the relationship between social capital and the knowledge sharing and their effect on improving the quality of educational service for universities. The study problem was determined in several questions related to the nature of the correlation relationship - the impact between the different independent variables (

... Show More
View Publication Preview PDF
Crossref (1)
Crossref