Preferred Language
Articles
/
jkmc-822
Cervical Pain Related to Position of the Neck during E-Learning
...Show More Authors

Conclusion: there is a relationship between poor posture and cervical pain during E-learning in the pandemic. Most of students were suffering from neck pain with greatest percentage were in those who student in recumbent on the floor and when using chair and table.

Background: During the pandemic, Corona virus forced many people, especially students, to spend more time than before on the computer and smartphone to study and communicate. The poor posture of the body may have worse effect on its body parts , most of which is the cervical spine (forward head posture).

Objective: To assess the incidence of neck pain and the associated factors among undergraduate medical students related to position during E learning

Subjects and Methods: Cross-sectional study was conducted among medical students in three Iraqi universities during 2021. The sample size was 152. Online questionnaire by Google forms sampling method were used to collect the data which was analysed using SPSS 25.

Results: The percentage of students who suffered cervical pain was (80.3%) of the 152 who participated in this study and the majority of those who suffered pain were complained from increase pain during the pandemic (72.1%). This study also showed the students recumbent on the floor 67 (44.1%) more than those who use the table and chair 62 (40.8%) during E-learning. The percentage of students who use the phone for more than 4 hours were (73.7%).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Developing and Sustaining a Multilevel Competitive Learning Organization – A Behavioral and Cognitive Approach
...Show More Authors

To maintain a sustained competitive position in the contemporary environment of  knowledge  economy,  organizations  as an open social systems must have an ability to learn and know  how to adapt to rapid changes  in a proper fashion so that organizational objectives will be achieved efficiently and effectively.  A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Transfer Learning Based Traffic Light Detection and Recognition Using CNN Inception-V3 Model
...Show More Authors

Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Word Embedding Methods for Word Representation in Deep Learning for Natural Language Processing
...Show More Authors

    Natural Language Processing (NLP) deals with analysing, understanding and generating languages likes human. One of the challenges of NLP is training computers to understand the way of learning and using a language as human.  Every training session consists of several types of sentences with different context and linguistic structures. Meaning of a sentence depends on actual meaning of main words with their correct positions. Same word can be used as a noun or adjective or others based on their position. In NLP, Word Embedding is a powerful method which is trained on large collection of texts and encoded general semantic and syntactic information of words. Choosing a right word embedding generates more efficient result than others

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (15)
Scopus Crossref
Publication Date
Mon Nov 27 2023
Journal Name
Journal Of Periodontal Research
Ability of gingival crevicular fluid volume, E‐cadherin, and total antioxidant capacity levels for predicting outcomes of nonsurgical periodontal therapy for periodontitis patients
...Show More Authors
Abstract<sec><title>Objectives

To determine the potential of gingival crevicular fluid (GCF) volume, E‐cadherin and total antioxidant capacity (TAC) levels to predict the outcomes of nonsurgical periodontal therapy (NSPT) for periodontitis patients.

Background

NSPT is the gold‐standard treatment for periodontal pockets < 6 mm in depth, however, successful outcomes are not always guaranteed due to several factors. Periodontitis‐associated tissue destruction is evidenced by the increased level of soluble E‐cadherin and reduced antioxidants in oral fluids which could be used as predictors for success/failure of N

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Al–bahith Al–a'alami
A Semiotic Approach to the Analysis of the News Story
...Show More Authors

This study attempts to provide an approach analysis for the news, depending on the bases and principles which conceptuality semiotic researchers of this field first of them «A. J. Gremas» for the theory of «narrative discourse analysis», to more clarify we tried to apply it on a published press- news, to concludes the most important steps and methods that are necessary to follows gain more understanding of the press- news.

View Publication Preview PDF
Publication Date
Mon Oct 23 2023
Journal Name
College Of Islamic Sciences
The concept of justice and its relationship to the law
...Show More Authors

Any person, regardless of his location in the air, whether he was kidnapped or trained, and then he performs a certain work, believes that his work is in vain, and by God, his deeds. I wonder if those who hold him in the first place will be safe in good form. He said that the essence of justice in the story is the story:

These are given the meaning we have fought in the fact that each group of. He went beyond creating a group of blocs, sects, and parties. If justice indicated one meaning, these relationships between people and peace would diminish. In fact, justice has only one concept, but there are several associations with it in the field of divorced one of these synonyms. However, the variation in racist drums in the encounte

... Show More
View Publication Preview PDF