Background: Tumors of the oral cavity are under
estimated in general dental and medical practice,
some authors describe it as the forgetting disease,
others wondering if the attention paid to this disease
compared to its fatality (The 5-year survival rate is
about 50%) is enough for disease control? However;
this disease deserves a comprehensive assessment by
all dental and medical fields assumed to examine the
oral cavity regularly, especially otolaryngologist.
Objectives: To find out the sensitivity and specificity
of clinical examination in diagnosing oral tumors and
premalignant conditions by otolaryngologist.
Methods: Across sectional retrospective study was
conducted in the:
-study design: Cross sectional.
-settings: Ear Nose Throat (ENT)departments in
Al-kindy Teaching Hospital
and Al-Yarmouk Teaching Hospital.
On Patients attending ENT department with oral
presentation.
The outcome variables includes: The sensitivity,
specificity, positive predictive value (Pv+ve), negative
predictive value (PV-ve), and the accuracy of clinical
examination in diagnosing oral tumors and
premalignant conditions in ENT clinic.
Results: The results revealed a high sensitivity and
specificity for otolaryngologist in diagnosing
malignant conditions and premalignant lesions of the
oral cavity.
Conclusion: The study highlights the need for fixed
clinical criteria for early diagnosis of premalignant
conditions and oral tumors
Modern automation robotics have replaced many human workers in industrial factories around the globe. The robotic arms are used for several manufacturing applications, and their responses required optimal control. In this paper, a robust approach of optimal position control for a DC motor in the robotic arm system is proposed. The general component of the automation system is first introduced. The mathematical model and the corresponding transfer functions of a DC motor in the robotic arm system are presented. The investigations of using DC motor in the robotic arm system without controller lead to poor system performance. Therefore, the analysis and design of a Proportional plus Integration plus Divertive (PID) controller is illustrated.
... Show MoreTillage appearance device is mechanical, electric-electronic design, getting Patent from the Central Organization for Standardization and Quality Control – Industrial Property Department - Ministry of Planning – The Republic of IRAQ under number Patent 3876 in 20 / 4 / 2014, calculates the number of clods per area by Tillage appearance device, This is done through the generation electrical impulses are sent to the controlled accurate calculates number clods required space and shows the result on the screen in order to see the tillage view per area. Three factor used in these experiment, first factor represents forward speed of tractor three levels (3.5, 4.5, and 5.5 km/h), second factor represent soil moisture content at two levels (14
... Show MoreThe theme of this Study presents analysis and discuss to the "Share the framework for assessing inflation," a practical study in a sample of joint stock companies listed on the Iraq Stock Exchange for the years (2009-2013). To determine the extent of the disparity between the nominal value of shares (Nominal Value) before deducting inflation and the real value (Real Value) per share, after deducting inflation in the case of zero growth. The study relied on annual reports of the companies of the research sample of the Iraq Stock Exchange, as well as the Iraqi Securities Commission. Besides the annual reports issued by the Ministry of Planning, as well as annual reports and statistical bulletin issued by the Central Bank of Iraq. It is fra
... Show MoreThe taxonomy of Ficus L., 1753 species is confusing because of the intense morphological variability and the ambiguity of the taxa. This study handled 36 macro-morphological characteristics to clarify the taxonomic identity of the taxa. The study revealed that Ficus is represented in the Egyptian gardens with forty-one taxa; 33 species, 4 subspecies and 4 varieties, and classified into five subgenera: Ficus Corner, 1960; Terega Raf., 1838; Sycomorus Raf., 1838; Synoecia (Miq.) Miq., 1867, and Spherosuke Raf.,1838; out of them seven were misidentified. Amongst, four new Ficus taxa were recently introduced to Egypt namely: F. lingua subsp. lingua Warb. ex De Wild. & T. Durand, 1901; F. pumila L., 1753; F. rumphii Blume, 1825, and F. su
... Show More