Background Over the past decade there has been a growing awareness of, and interest in, the trace element concentration differences between normal and diseased tissues. Significant changes in tissue concentrations of Zinc (Zn) and Copper (Cu) have been previously reported in inflammation and cancer of certain human tissues.
Aim:(1)To correlate between Zn and Cu concentrations and the histological picture of normal and certain inflamed human tissues, namely the gall bladder (GB) the vermiform appendix (VA), visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). (2) to detect whether there is a difference in the above-mentioned parameters between VAT and SAT. (3) to obtain recordings for trace element levels in human tissues.
Methods: Diseased GB (10), VA (10), VAT (10) near these organs and SAT (10) were removed by surgery. Tissues from these organs were then processed for histopathology and analyzed for trace elements concentration by Atomic Absorption Flame-Emission Spectrophotometer.
Results: Zn concentration was high in VAT (0.410 μg/g ± 0.181), GB (0.478 μg/g ±0.531) and VA (0.419 μg/g ±0.123) when compared to its level in SAT (0.1329 μg/g ± 0.0129) and the difference was significant (<0.007,<0.056 and <0.000 respectively).
Cu concentration was high in VAT (0.640 μg/g ± 0.150) and GB (0.919 μg/g ± 0.564) when compared to SAT (0.3893 μg/g ± 0.0130) and the difference was significant (<0.005 and <0.011 respectively). Cu concentration in the VA was low (0.2055 μg/g ±0.0654) and significantly different from all the other tissues (VA vs VAT <0.000, VA vs GB <0.002 and VA vs SAT <0.000).
The histology findings were typical of chronic inflammatory reactions in the GB and of acute inflammation in the VA.
Conclusions: The increase in tissue concentrations of Zn in VAT, GB & VA is due to inflammation.
The high Cu level in chronically inflamed GB and neighboring VAT is due to the increased need for this element during inflammation.
Our results, together with findings reported by others, allow us to think of using trace elements, namely Zn and Cu, as tools for diagnosis and treatment in appropriate conditions.
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreA new ligand [N-(4-chlorobenzoyl amino) -thioxomethyl] valine (cbv) is synthesized by reaction of 4- chloro benzoyl iso thio cyanate with valine acid. The ligand is Characterized by elemental analysis ,FT-IR, and 13C 1H NMR spectra, some transition metals complex of this ligand were prepared and Characterized by FTIR , UV-Visible spectra , conductivity measurement's ,magnetic susceptibility , atomic absorption and determination of molar ratio (M:L), from results obtained , the following formula [M(cbv)2] where M+2 =Mn, Fe ,Co , Ni , Cu,Zn,Cd, and Hg and the proposed molecular structure for these complexes as tetrahedral geometry, except copper complex is have square planer geometry
Aeromonas hydrophila have been isolated as a cause of a cute gastroenteritis in 23 (5.6%) of 410 patients. Other bacterial enteropathogens have been isolated from 387 patients with diarrhea, were 19 different strains. A. hydrophila occurred more commonly in children with acute diarrhea, the results showed that 18(78.26%) isolates of A. hydrophila found in children under 10 years old ,distributed to 10(43.47%) in male and 8(34.78%) in female ,and in adults with diarrhea 5 (21.73%). In the other hand, we noticed frequency of isolation was higher in male 14(60.86%) when compared with 9(39.14%) in female. Six strains of A. hydrophila have been observed to have bacteriocin activity against 12 of 23 different A. hydrophila ,as well as Staphy
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreInferential methods of statistical distributions have reached a high level of interest in recent years. However, in real life, data can follow more than one distribution, and then mixture models must be fitted to such data. One of which is a finite mixture of Rayleigh distribution that is widely used in modelling lifetime data in many fields, such as medicine, agriculture and engineering. In this paper, we proposed a new Bayesian frameworks by assuming conjugate priors for the square of the component parameters. We used this prior distribution in the classical Bayesian, Metropolis-hasting (MH) and Gibbs sampler methods. The performance of these techniques were assessed by conducting data which was generated from two and three-component mixt
... Show MoreBecause of Cadmium selenide quantum dots (CdSe quantum dots) has a tuning energy gap in the visible light range, therefore; it is provided a simple theoretical model for the absorption coefficient of CdSe quantum dots, where the absorption coefficient determines the extent to which the light of a material can penetrate a specific wavelength before it is absorbed. CdSe quantum dots have an energy gap can be controlled through two effects: the temperature and the dot size of them. It is found that; there is an absorption threshold for each directed wavelength, where CdSe quantum dots begin to absorb the visible spectrum at a size of 1.4 nm at room temperature for a directed wavelength 3