Background: Prelabour rupture of membranes is a problem that faces the obstetricians. It has many maternal and fetal sequale and its etiology and management still controversial.
Objective: To test the absolute nucleated red blood cells counts at birth in infants who are born after prelabour rupture of membranes.
Methods: A prospective study conducted in AL-Kadhymia Teaching Hospital. Hundred pregnant women were included in this study. Fifty pregnant women who had prelabour rupture of membranes considered as group (1), other fifty pregnant women with intact membranes considered as group (2) through a period of one year. Nucleated red blood cell counts of venous cord blood obtained within one hour of life from 50 infants who were born after prelabour rupture of membranes. The same procedure was applied for the control group.
Results: The nucleated red blood cell counts and Haematocrit were significantly higher in infants who were born after prelabour rupture of membrane than in the control group (P value <0.001 and 0.03 respectively).
Conclusion: Infants born after prelabour rupture of membrane have higher nucleated red blood cell counts at birth than the control group.
The adsorption ability of Iraqi initiated calcined granulated montmorillonite to adsorb Symmetrical Schiff Base Ligand 4,4’-[hydrazine-1, 2-diylidenebis (methan-1-yl-1-ylidene)) bis (2-methoxyphenol)] derived from condensation reaction of hydrazine hydrate and 4-hydroxy-3-methoxybenzaldehyde, from aqueous solutions has been investigated through columnar method.The ligand (H2L) adsorption found to be dependent on adsorbent dosage, initial concentration and contact time.All columnar experiments were carried out at three different pH values (5.5, 7and 8) using buffer solutions at flow rate of (3 drops/ min.),at room temperature (25±2)°C. The experimental isotherm data were analyzed using Langmuir, Freundlich and Temkin equations. The monol
... Show MoreOptical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreThis paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show More