Background: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods: MRI of (45 )patients with vertebral compression fracture who underwent MRI of spine during 2 years period ( 2004-2006) in Neuro surgical hospital were retrospectively reviewed by an expedient radiologist , A collapsed vertebra were considered to be acute if there was recent history of back pain of less than 3moths. All MRI sequences needed for spine examination was done( T1WI SE, T2WI GE STIR, and Mylography ) and Gadolinium contrast medium was given to all patients..Results: Of total 45 patients (31male, 14 female, their age range between 18-72years) , The criteria used to differentiate between benign andmalignant collapse spine on MRI was based on the signal intensity, morphology and contrast enhancement for the correct diagnosis. Homogenous and diffuse abnormal signal intensity, posterior convexity and involvement of pedicles are sign that are strongly suggestive of malignant collapse .Conversely, a band like area of low signal intensity adjacent to depressed end plateand preservation of signal intensity of vertebra suggest benign nature of the collapse.Conclusions: We found that MRI features is helpful in differentiation of malignant and benign compression fractures in majority of cases, and if initial MRI finding are equivocal correlation with other images technique, follow up and biopsy in selected cases helpful in arriving correct diagnosis
This paper investigated in the numerical simulation model to calculate the Earth magnetic field components at north provinces of Najaf city (Longitude 44.316 o -44.3592o E and Latitude 32.0508o - 32.0256o N). The components of the Earth magnetic field (total intensity (F), horizontal intensity (H), declination (D), inclination (I), the north component(X), the east component(Y), and Down component(Z)) were found by using spherical harmonic world magnetic model (WMM2010). A great deal of anomaly has been discovered in all components of the Earth magnetic field at the selected region (Long. 44.345o-44.335o E, Lat.32.042o-32.032o N) using Kriging method.
... Show MoreManganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show MoreThe possibility of using the magnetic field technique in prevention of forming scales in heat exchangers pipes using
hard water in heat transfer processes, also the studying the effective and controllable parameters on the mechanism of
scale formation.
The new designed heat exchanger experimental system was used after carrying out the basic process designs of the
system. This system was used to study the effect of the temperature (40-90 °C) and water flow rate (0.6-1.2 L/min) on
the total hardness with time as a function of precipitation of hardness salts from water and scale formation.
Different magnetic field designs in the heat exchanger experimental system were used to study the effect of magnetic
field design a
Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time. Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle to involve four types of binary code books (i.e. Pour when , Flat when , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding procedure, with very small distortion per block, by designing s
... Show MoreImage quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel
... Show MoreIn all applications and specially in real time applications, image processing and compression plays in modern life a very important part in both storage and transmission over internet for example, but finding orthogonal matrices as a filter or transform in different sizes is very complex and importance to using in different applications like image processing and communications systems, at present, new method to find orthogonal matrices as transform filter then used for Mixed Transforms Generated by using a technique so-called Tensor Product based for Data Processing, these techniques are developed and utilized. Our aims at this paper are to evaluate and analyze this new mixed technique in Image Compression using the Discrete Wavelet Transfo
... Show MoreImage compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show More