Background: Since its introduction to musculoskeletal imaging in the early 1980, magnetic resonance imaging (MRI) has revolutionized diagnostic imaging of the knee. It is therefore become the examination of choice in the evaluation of internal joint structures of the knee like menisci, cruciate ligaments, and articular cartilage.Objectives: to describe the MRI finding in various knee injuries.Patients and methods: A cross sectional study was done on 130 patients with history of knee injury in MRI unit at institute of radiology and al-Shaheed Ghazi Al-Hariri Hospital in medical city complex - Baghdad, from October 2011 to February 2013 includes 103 men, 27 women; the mean age was 33.86 years. MR imaging studies of the knee performed using a 1.5 T MR system. The sequences included coronal and sagittal PD, sagittal T2 FSE, fat suppressed T2 FSE, STIR axial and coronal. Knee MR studies were obtained to evaluate ligament, menisci, articular surface and bone pathologies of knee injuries.Results: MR images were normal in 15 patients; it was positive for meniscal tears in 59 patients and maximum involvement was in the medial meniscus and the posteriorhorn. These tears were classified into grade 1 (28.8%), grade 2 (11.5%), grade 3 (53.9%) and grade 4 (5.8%). Ligament tears were seen in 70 patients. Secondary signs associated with ligament tears were also assessed.Conclusions: MRI is an accurate, non-invasive technique for examination of the soft tissues and osseous structures of the knee. It has great capability in diagnosing meniscal tears and classifying them into grades and types, which would avoid unnecessary arthroscopic examination. It is a very good modality to diagnose complete tears of the anterior cruciate ligament (ACL).maging, meniscus
At thermal energies near stellar conditions, nuclear reactions are sensitive to resonance strengths of the nuclear reaction cross-section. In this paper, the resonance strengths of nuclear reaction were evaluated numerically by means of nuclear reaction rate calculations using a written Matlab code, at the energies of interest in stellar nuclear reactions. The results were compared with standard reaction before and after application of a statistical analyses, to select the best parameters that made theoretical results as close as possible to the standard values. Fitting was made for different temperature ranges up to 10 GK, 0.6 GK and 0.25 GK. The evaluated results showed that as the temperature range becomes narrower, more error is ad
... Show MoreMany important archaeological sites in Iraq still need to be preserved. Some of these sites were subjected to destruction and negligence. So, exploring these sites represents a priority for its protection. A 2D Electrical Resistivity Imaging (ERI) as a non-invasive geophysical survey method was implemented at a part of the Borsippa archaeological site near Babylon to search for the subsurface archaeological artefacts/structures. Electrical resistivity measurements were carried out using a Dipole-Dipole array. Steps were taken to process and filter using Horizontal profiles, forward modelling, and 2D inverse models to analyze the resistivity measurements. The ERI inversion results show that the superficial conductive zone produced va
... Show MoreWe report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker human epidermal growth factor receptor 2 (HER2), and zinc(II) protoporphyrin IX (ZnPP) to combine imaging, targeting and therapy within one nanostructure. Colloidal PbS QDs were synthesized in aqueous solution with a nanocrystal diameter of ∼5 nm and photoluminescence emission in the near infrared wavelength range. The ZHER2:432 affibody, mutated through the introduction of two cysteine residues at the C-terminus (
The friendly-environment geophysical methods are commonly used in various engineering and near-surface environmental investigations. Electrical Resistivity Imaging technique was used to investigate the subsurface rocks, sediments properties of a proposed industrial site to characterize the lateral and vertical lithological changes. via the electrical resistivity, to give an overview about the karst, weak and robust subsoil zones. Nineteen 2D ERI profiles using Wenner array with 2 m electrode spacing have been applied to investigate the specific industry area. One of these profiles has been conducted with one-meter electrode spacing. The surveyed profiles are divided into a number of blocks, each block consists of several parallel pr
... Show MoreAIM: To determine the value of the combination of thin-section 3 mm coronal and standard axial DWI and their impact in facilitating the diagnosis of acute brainstem infarction. METHODS: A cross-sectional study conducted from the 1st of April 2017 to the end of February 2018 on 100 consecutive patients (66% were male, and 34% were female) with isolated acute ischemic infarction in the brainstem. The abnormal MRI findings concerning the ischemic lesions were interpreted on standard axial 5 mm and thin-section coronal 3mm DWI. RESULTS: The mean age of the studied group was 69.2 ± 4.3 for male and 72.3 ± 2.5 years. The standard axial DWI can diagnose 20%, 6.7% and 6.7% of the infarctions in midbrain, pons an
... Show MoreBackground: Thalassemia is characterized by the decrease or absence of the synthesis of one or more globin chains of hemoglobin. Thalassemia is distributed worldwide and is characterized by; regular blood transfusion which is creating alloimmunization to erythrocyte antigens is one of the major complications of regular blood transfusions in thalassemia, particularly in patients who are chronically transfused.Objectives: The aims of this study are to understand the immune system profile as the triggering factor for thalassemia.Methods: Thirty patients aging between one year and four months and twenty two years, twenty two of them were boys and eight were girls. Twenty nine patients, their parents are relative except one and studied in the
... Show MoreNonmissile penetrating traumatic brain injuries (pTBIs) are low-velocity injuries which can be caused by a variety of inflicting tools and represent a rare entity in children. Poor outcome has been attributed with an initial admission Glasgow Coma Scale (GCS) of <5, asymmetrical pupil size, and specific initial computed tomography scan findings including brainstem injury.
We report a case of an 11-year-old boy who presented to our ER with a GCS of 6 after being assaulted on his head by a 30 cm length metallic tent hook penetrating his forehead reaching down to the central skull bas
Background: Ulcerative colitis disease is a chronic inflammatory condition that affects the gastrointestinal tract. In regulation of this inflammatory process, Interleukin-6, C-reactive proteins and albumin have a major role. Overproduction of IL-6 by immunocompetent cells contributes to activate the liver to produce CRP, transudation of plasma albumin and development of the inflammatory condition. Elevated levels of IL-6 in saliva could be expected, because the saliva-producing cells are part of the digestive system. The purpose of this study was to assess salivary IL-6, CRP and albumin in ulcerative colitis patients in relation to oral findings. Materials and methods: Forty eight saliva specimens collected from three groups of subjects (s
... Show MoreMagnetic nanoparticles (MNPs) of iron oxide (Fe3O4) represent the most promising materials in many applications. MNPs have been synthesized by co-precipitation of ferric and ferrous ions in alkaline solution. Two methods of synthesis were conducted with different parameters, such as temperature (25 and 80 ̊C), adding a base to the reactants and the opposite process, and using nitrogen as an inert gas. The product of the first method (MNPs-1) and the second method (MNPs-2) were characterized by x-ray diffractometer (XRD), Zeta Potential, atomic force microscope (AFM) and scanning electron microscope (SEM). AFM results showed convergent particle size of (MNPs-1) and (MNPs-2) with (86.01) and (74.14)
... Show MoreThis work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44
... Show More