Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- sectional study.Methods: Data taken from 114 patients with DVT were analyzed by association rules mining.Immobility was the most important risk factor. Results: Smoking add more risk to immobile, post operative patient. Age per se has no effect.100% of patients with long bone fracture, were immobile. Fever occurred in one third of post operative patients who develop DVT. Conclusions: Association rules mining allow better and faster analysis of more data with an interactive powerful system, which saves time and effort, and discovers the relations among many factors to one or more than one factors. So, we use this method for analysis in this study, and we get the above mentioned relations, which are important for the future management of DVT.
Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreI attended the new chief base of bilateral interaction Para Amino like 1 Phenyl 4 Bayrosolin 5 Online with Alsalesl Aldehid someone Allicand by careful analysis of the elements and infrared spectrum
Activities associated with mining of uranium have generated significant quantities of waste materials containing uranium and other toxic metals. A qualitative and quantitative study was performed to assess the situation of nuclear pollution resulting from waste of drilling and exploration left on the surface layer of soil surrounding the abandoned uranium mine hole located in the southern of Najaf province in Iraq state. To measure the specific activity, twenty five surface soil samples were collected, prepared and analyzed by using gamma- ray spectrometer based on high counting efficiency NaI(Tl) scintillation detector. The results showed that the specific activities in Bq/kg are 37.31 to 1112.47 with mean of 268.16, 0.28 to 18.57 with
... Show More
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show MoreThe Al Mishraq site has been the subject of many scientific studies for the period before and
after the fire in 2003. Five visits to the site were conducted twice in 2003 for general fact-finding, twice
in 2004, and once in 2005 for detailed sampling and monitoring. Desk-based research and laboratory analysis of soil and water samples results indicate that surface water and groundwater pollution from Al Mishraq site was significant at the time of its operation. The primary pollution source was the superheated water injection process, while the principal receptor is the River Tigris. Now that the plant is idle, this source is absent. Following the June 2003 sulphur fire, initial investigations indicate that short damage to
vegeta
The impact of Jurisprudence Rules in Addressing Contemporary security Challenges
Islamic jurisprudence is related to various fields of knowledge, as it is a science of great value, great in impact, and among the most prominent features of jurisprudence comes the jurisprudence rules. It regulates the principles of the doctrine for the jurist. Therefore, the main this research focuses on (the impact of jurisprudence rules in addressing contemporary security challenges). It is the relationship between jurisprudence rules and achieving security. Its fruit would be a statement of the distinguished impact of jurisprudence rules on the stability of the country, and its leading role in maintaining, strengthening, and pre
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MoreFace recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show More