Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- sectional study.Methods: Data taken from 114 patients with DVT were analyzed by association rules mining.Immobility was the most important risk factor. Results: Smoking add more risk to immobile, post operative patient. Age per se has no effect.100% of patients with long bone fracture, were immobile. Fever occurred in one third of post operative patients who develop DVT. Conclusions: Association rules mining allow better and faster analysis of more data with an interactive powerful system, which saves time and effort, and discovers the relations among many factors to one or more than one factors. So, we use this method for analysis in this study, and we get the above mentioned relations, which are important for the future management of DVT.
Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep bea
... Show MoreA signature is a special identifier that confirms a person's identity and distinguishes him or her from others. The main goal of this paper is to present a deep study of the spatial density distribution method and the effect of a mass-based segmentation algorithm on its performance while it is being used to recognize handwritten signatures in an offline mode. The methodology of the algorithm is based on dividing the image of the signature into tiles that reflect the shape and geometry of the signature, and then extracting five spatial features from each of these tiles. Features include the mass of each tile, the relative mean, and the relative standard deviation for the vertical and horizontal projections of that tile. In the clas
... Show MoreMost studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Results of charge, neutron and matter densities and related form factors for one- proton halo nucleus 8B are presented using a two- frequency shell model approach. We choose a model space for the core of 7Be different from that of the extra one valence proton. One configuration is assumed for the outer proton to be in 1p1/2 - shell. The results of the matter density distributions are compared with those fitted to the experimental data. The calculated proton and matter density distributions of this exotic nucleus exhibit a long tail behavior, which is considered as a distinctive feature of halo nuclei. Elastic electron scattering form factors of this exotic nucleus are also studied. The effects of
... Show MoreAbstract
The goal of the research is to diagnose some of the negative phenomena which was discovered through the period from (2010 to 2014) as determined by the national strategy to eliminate the corruption which was set out by the joint council of the corruption elimination in Iraq. And to measure the gap in applying the legal rules by the administration, concerning the misconducts and felonies upon the state employments made by the state employee and how far they are applied in the studied sample and to show the nature of the rules and their importance and their role when they are applied in scientific and expertise manner. And to encourage the offices of the general supervisors to adhere to them which will lead t
... Show MoreA specific, sensitive and new simple method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation of ion pair compound between methyldopa and potassium hexacyanoferrate in acidic medium to obtain a yellow precipitate complex using long distance chasing photometer (NAG-ADF-300-2). The linear range for calibration graph was 0.05-35 mmol/L for cell A and 0.05-25 mmol/L for cell B, and LOD 1.4292 µg /200 µL for both cells with correlation coefficient (r) 0.9981 for cell A and 0.9994 for cell B, RSD% was lower than 0.5 % for n=8 for. The results were compared with classical method UV-Spectrophotometric at λ max=280 nm and turbi
... Show MoreAn expression for the transition charge density is investigated where the deformation in nuclear collective modes is taken into consideration besides the shell model transition density. The inelastic longitudinal form factors C2 calculated using this transition charge density with excitation of the levels for Cr54,52,50 nuclei. In this work, the core polarization transition density is evaluated by adopting the shape of Tassie model together with the derived form of the ground state two-body charge density distributions (2BCDD's). It is noticed that the core polarization effects which represent the collective modes are essential in obtaining a remarkable agreement between the calculated inelastic longitudinal F(q)'s and those of experimen
... Show MoreNew two experiments of the three factors, in this study were constructed to investigate the effects, of the fixed variations to the box plot on subjects' judgments of the box lengths. These two experiments were constructed as an extension to the group B experiments, the ratio experiments the experiments with two variables carried out previously by Hussin, M.M. (1989, 2006, 2007). The first experiment box notch experiment, and the second experiment outlier values experiment. Subjects were asked to judge what percentage the shorter represented of the longer length in pairs of box lengths and give an estimate of percentage, one being a standard plot and the other being of a different box lengths and
... Show MoreIn gene regulation, transcription factors (TFs) play a key function. It transmits genetic information from DNA to messenger RNA during the process of DNA transcription. During this step, the transcription factor binds to a segment of the DNA sequence known as Transcription Factor Binding Sites (TFBS). The goal of this study is to build a model that predicts whether or not a DNA binding site attaches to a certain transcription factor (TF). TFs are regulatory molecules that bind to particular sequence motifs in the gene to induce or restrict targeted gene transcription. Two classification methods will be used, which are support vector machine (SVM) and kernel logistic regression (KLR). Moreover, the KLR algorithm depends on another regress
... Show More