Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement, patients were imaged with sagittal short tau inversion recovery sequences and sagittal T2 weighted. Results: The mean age of the patients was 32.5 ± 6.7years; female to male ratio was 2.7:1. The total number of spinal cord MS lesions was 44 of them 86.4% in the cervical spine, 68.2%of the lesions had less than one vertebra extension,79.6% of the lesions did not show changes in the spinal cord morphology. There was a significant upgrading in the lesions conspicuity at short tau inversion recovery sequence comparing to T2 weighted image, P<0.001. A significant difference had been found in artifact grading between both sequences; P<0.001. Conclusions: short tau inversion recovery magnetic resonance image sequences improve detection of MS spinal cord plaques compared with T2 weighted image and itincreasesthe conspicuity of the visualized T2weighted image lesions, but also it accentuates theartifacts more than T2weighted image.
Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s
... Show MoreIntroduction: Cerebral hydatid disease (CHD) is rare and the multiple-cystic variety is even rarer. In this paper, we report a case of multiple CHD and explore a possible link with a preceding spontaneous intracerebral haemorrhage (ICH). Case presentation: A 27-year old gentleman with a history of surgically-evacuated, spontaneous ICH presented with severe headache, left-sided weakness - Medical Research Council (MRC) grade II - and recurrent tonic-clonic seizures, while on a full dose of anti-epileptic medication. Brain magnetic resonance imaging (MRI) scans showed multiple intra-axial cystic lesions in the right hemisphere. The cysts were removed intact using Dowling’s technique through a large temporoparietal crani
... Show MoreIn this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
The study aimed to determine the impact of energy for the north and south magnetic poles on the the growth of bacteria isolated from cases of tooth decay, 68 swabs were collected from surfaces of faulty tooth, the detected of Staphylococcus aureus
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThis research deals with the effect of gallium oxide and cerium oxide as dopants on the structural and optical characteristics of tin oxide. Gallium and cerium oxide doped tin oxide was prepared with different doping concentrations (0, 0.03, 0.05 and 0.07) wt. pure and doped tin oxide thin films were prepared by the pulsed laser deposition technique. X-ray diffraction and UV-Visible spectrophotometer were employed to investigate both oxides doping effects. Results showed that all prepared samples have poly-crystalline structure with a preferred plane of crystal growth along (110), where the crystal size grew from 40.3 nm to 64.5 nm and to 43.5 nm for Ga2O3 and CeO2 doped tin oxide thin films, res
... Show Morehas experienced a step-change since the inception of ambient mass spectrometry removed the requirement for samples to be investigated under vacuum conditions. Approaches based on surface– plasma interactions are especially promising, including PADI. Whilst the mechanisms involved in generating PADI spectra still need to be unravelled, PADI shows significant promise to become a valuable and versatile tool in the instrumental arsenal available to the surface analyst
Back ground: Psoriasis is a chronic relapsing disorder with no life long cure, many systemic and topical modalities are available, one of these topical modalities is the vitamin D analogue
(calcipotriene) which is widely used recently to treat psoriasis and many other skin problems.
Aim of the study: Is to compare the safety, the efficacy and the tolerability of tolerability of topical calcipotriene, topical clobetasol and both of them in combination in treating Iraqi patients with psoriasis vulgaris. (The first study in Iraq that uses calcipotriene ointment in treating psoriasis and comparing it with other known topical treatments that were commonly used to treat this problem).
Patients and methods A to
Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show More