Prostate cancer is the commonest male cancer and the second leading cause of cancer-related death in men. Over many decades, prostate cancer detection represented a continuous challenge to urologists. Although all urologists and pathologists agree that tissue diagnosis is essential especially before commencing active surgical or radiation treatment, the best way to obtain the biopsy was always the big hurdle. The heterogenicity of the tumor pathology is very well seen in its radiological appearance. Ultrasound has been proven to be of limited sensitivity and specificity in detecting prostate cancer. However, it was the only available targeting technique for years and was used to guide biopsy needle passed transrectally or transperineally. Magnetic Resonance Imaging (MRI) has revolutionized the process with the advent of its multiparametric imaging (mp MRI) where the prostate is evaluated by different MRI techniques and the likelihood of the detected lesion is scored using the new prostate imaging-reporting and data system (PIRADS) scoring. Despite the improved detection of clinically significant prostate cancer by mpMRI, the ideal way to target the area of suspicion detected by mpMRI is the next level of challenge. In this review article, we will discuss the recent methods of targeting and focus on the different platforms used to integrate the mpMRI static images with the real-time US scanning in what is called (US-MRI fusion techniques).
Metalloendo peptidase is a neutral endopeptidase that cleaves peptides at the amino side of hydrophobic residues and inactivates several peptide hormones, including atrial natriuretic factor, giucagon, enkephalin, substance p, neurotensin, oxytocin, and bradykinin. It is also a major enzyme for the degradation of beta-amyloid. This study aimed to measure enzyme activity and compare it with other biochemical changes in sera patients with diabetic nephropathy. The study included 35 pathological samples of people with diabetic nephropathy, 24 samples from males and 11 samples from females, as well as the same number of healthy people as a comparison group of 15 males, 20 females, with the ages of both groups of patients with diabetic nephropat
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Global Navigation Satellite Systems (GNSS) have become an integral part of wide range of applications. One of these applications of GNSS is implementation of the cellular phone to locate the position of users and this technology has been employed in social media applications. Moreover, GNSS have been effectively employed in transportation, GIS, mobile satellite communications, and etc. On the other hand, the geomatics sciences use the GNSS for many practical and scientific applications such as surveying and mapping and monitoring, etc.
In this study, the GNSS raw data of ISER CORS, which is located in the North of Iraq, are processed and analyzed to build up coordinate time series for the purpose of detection the
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreDigital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different
... Show More