In this research, the structural and optical measurements were made on the Zinc oxide (ZnO) films prepared by two methods once by using chemical spray pyrolysis technique, and another by using thermal evaporation technique before and after irradiation by Gamma –Ray (γ – rays) from source type (Cs 137) with an energy (0.611)MeV as a function of gamma dose (0.15,0.3 and 0.45) Gy. The thickness of all films prepared by two method was about (300 ± 50) nm. XRD is used to characterize the structural properties, the results demonstrated that all samples prepared by two method before and after irradiation have polycrystalline structure with a preferred orientation (002).Also it showed that the structural properties are weakly dependent on the gamma dose. The optical measurement shows that all ZnO films prepared by two method have a direct energy gap, and they in general decrease with the increase of Gamma dose while the optical constant such as absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant and optical conductivity showed an opposite trend, these values increase with the increase of irradiation dose. As well as all optical properties for the samples prepared by thermal evaporation technique is higher than the samples prepared by chemical spray pyrolysis technique.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur
... Show MoreVacuum evaporation technique was used to prepare pure and doped ZnS:Pb thin films at10% atomic weight of Pb element onto glass substrates at room temperature for 200 nm thickness. Effect of doping on a.c electrical properties such as, a.c conductivity, real, and imaginary parts of dielectric constant within frequency range (10 KHz - 10 MHz) are measured. The frequency dependence of a.c conductivity is matched with correlated barrier hoping especially at higher frequency. Effect of doping on behavior of a.c mechanism within temperature range 298-473 K was studied.
Polymer films of PEG and PVA and their blend with different
concentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study using
casting technique. The X-ray spectra of pure PEG, PVA and
PVA:PEG films and with addition of 2% concentrations from
(MnCl2) show amorphous structures. The results for FTIR show the
interaction between the filler and polymer blend results in
decreasing crystallinity with rich amorphous phase. This
amorphous nature confirms the complexation between the filler and
the polymer blend. The optical properties of (PVA:PEG/MnCl2)
contain the recording of absorbance (A) and explain that the
absorption coefficient (α), refractive index (n), extinction coefficient
(ko) and the dielectric cons
The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici
... Show Moreoptical properties of pure poly(vinyl Alcohol) films and poly(vinyl Alcohol) doped with methyl red were study, different percentage prepared with constant thickness using casting technique. Absorption, Transmission spectra have been recorded in order to study the optical parameters such as absorption coefficient, energy gap, refractive index, Extinction coefficient and dispersion parameters were measured in the wavelength range (200-800)nm. This study reveals that the optical properties of PVA affect by increasing the impurity concentration.