Different thicknesseses of polycrystalline ZnTe films have been deposited on to glass substrates by vacuum evaporation technique under vacuum 2.1x10-5 mbar. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a cubic (zinc blende ) structure. The calculated microstructure parameters revealed that the crystallite size increases with increasing film thicknesses. The optical measurements on the deposited films were performed in different thicknesseses [ 400 , 450 and 500]nm, to determine the transmission spectrum and the absorption spectra as a function of incident wavelength. The optical absorption coefficient (α) of the films was determined from transmittance spectra in the range of wavelength (400-1100) nm. The dependence of absorption coefficient, on the photon energy showed the occurrence of a direct transition with band gap energy from 2.24eV to 1.92eV (for ZnTe films of different thicknesseses), where with high film thicknesses there are several energy levels resulting in several overlapping energy bands in the band gap of these films. The overlapping energy bands therefore tend to reduce the energy band gap, resulting in lower band gaps for thicker films.
Cerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreA thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increase
... Show MoreIraqi oil crudes have some of the physical and chemical characteristics that distinguish it from other types of oil crudes in the world. Some of these features such us molecular composition, rheological, viscosity and emulsions are studied carefully by researchers. In this work, a comparative study of the linear and the non-linear optical properties for typical heavy and light crude oils of Iraqi origin was studied utilizing Z-scan technique. The He -Ne laser of wavelength 632.8 nm had been used for this purpose. These samples were collected from Basra and Kut oil fields. The values of the non-linear refractive index (n2), non-linear absorption coefficient (β), and third-order electrical susceptibility (χ3) were e
... Show MoreAn electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreThe physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten
... Show MoreIn this study, titanium dioxide (TiO2 (are synthesized by sol– gel simple method. Thin films of sol, gel, and sol- gel on relatively flat glass substrates are applied with Spin coating technique with multilayers. The optical and morphological properties (studied using AFM) of TiO2 layers show good properties, with particles diameters less than 4 nm for all prepared samples and have maximum length 62 nm for TiO2 gel thin films of three layers. The results show low roughness values for all films especially for 4 layers sol (8.37nm), which improve the application in dye sensitive solar cell (DSSc) .
In this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for treatment of heavy metals wastewater contains zinc. In this research, the salt of heavy metals were zinc chloride (ZnCl2) used as feed solution.Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The parameters studied were: operating time (0 – 70 min), feed concentrations for zinc ions (10 – 300 mg/l), operating pressure (1 – 4 bar).The theoretical results showed, flux of water through membrane decline from 19 to 10.85 LMH with time. Flux decrease from 25.84 to 10.88 LMH with the increment of feed concentration. The raise of pressure, the flux increase for NF and RO membranes.The maximum
... Show More