In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
In this study, a brand-new double transform known as the double INEM transform is introduced. Combined with the definition and essential features of the proposed double transform, new findings on partial derivatives, Heaviside function, are also presented. Additionally, we solve several symmetric applications to show how effective the provided transform is at resolving partial differential equation.
This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim
... Show MoreIn the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H
... Show MoreThere are many tools and S/W systems to generate finite state automata, FSA, due to its importance in modeling and simulation and its wide variety of applications. However, no appropriate tool that can generate finite state automata, FSA, for DNA motif template due to the huge size of the motif template. In addition to the optional paths in the motif structure which are represented by the gap. These reasons lead to the unavailability of the specifications of the automata to be generated. This absence of specifications makes the generating process very difficult. This paper presents a novel algorithm to construct FSAs for DNA motif templates. This research is the first research presents the problem of generating FSAs for DNA motif temp
... Show MoreIn this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented. The numerical solution of these equations is obtained by using Open Newton Cotes formula. The Open Newton Cotes formula is applied to find the optimum solution for this equation. The computer program is written in (MATLAB) language (version 6)
Complex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.
Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreEbastine (EBS) is a non-sedating antihistamine with a long duration of action. This drug has predominantly hydrophobic property causing a low solubility and low bioavailability. Surface solid dispersions (SSD) is an effective technique for improving the solubility and dissolution rate of poorly soluble drugs by using hydrophilic water insoluble carriers.
The present study aims to enhance the solubility and dissolution rate of EBS by using surface solid dispersion technique. Avicel® PH101, Avicel® PH 102, croscarmellose sodium(CCS) and sodium starch glycolate(SSG) were used as water insoluble hydrophilic carriers.
The SSD formulations of EBS were prepared by the solvent evaporation method in different drug: carrier
... Show MoreThe characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.