Toxicity assays were used in this study to test how DDT affects lethality and brood size of Caenorhabditis elegans (C.elegans) by exposing them to various concentrations of this agent. These nematodes have provided a very informative system that was utilized to study the behavioural and physiological processes. The results showed that DDT affected the lethality in a dose-dependent manner, but 100% kill was not achieved with concentration tested. Whereas, sodium azide, positive control does have an effect on C. elegans and significantly inhibiting lethality (LC50 0.01mM). Similarly, DDT led to a pronounced effect in brood size of C.elegans compared to the mean brood size recorded for the control (0.1% DMSO). Sodium azide results showed a greater difference in brood size compared to DDT. Both agents, DDT and sodium azide caused a remarkable inhibitory effect on C.elegans pharyngeal pumping rate. It can be concluded that the target site of DDT in C.elegans might not be the same target in insect.
In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
In the recent years the research on the activated carbon preparation from agro-waste and byproducts have been increased due to their potency for agro-waste elimination. This paper presents a literature review on the synthesis of activated carbon from agro-waste using microwave irradiation method for heating. The applicable approach is highlighted, as well as the effects of activation conditions including carbonization temperature, retention period, and impregnation ratio. The review reveals that the agricultural wastes heated using a chemical process and microwave energy can produce activated carbon with a surface area that is significantly higher than that using the conventional heating method.
This paper investigates the interaction between fiscal and monetary policy in Iraq after 2003 using the prisoner’s dilemma.The paper aims to determine the best form of coordination between these policies to achieve their goals; payoff matrix for both policies was constructed. To achieve the purpose, the quantitative approach was applied using several methods, including regression, building payoff matrices and decision analysis using a number of software.The results of the monetary policy payment function show that inflation rate has an inverse relationship with the auctions of selling foreign currency and a positive relationship with the government’s activity, while the fiscal policy function shows that real growth is positively
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThe current study aims to find a new plan to manage the water quality of the western part of the Hammar Marsh to reduce the salts that cause problems for the marshes and preserve their environmental life by isolating the southwestern part of the Hammar Marsh by closing the outlet under the railway embankment. The outlet is discharging saline water to the east-western part of Al Hammar Marsh. After isolating the southwestern part of the marsh, a new outlet is proposed. The impact of the flow hydrodynamics on improving the water quality was simulated using the SMS model. The hydrodynamics and water quality simulation models for the marsh are : a hydrodynamic model and average depth (SMS RMA2) and a two-dimensional water quality model (SMS
... Show More