Preferred Language
Articles
/
jih-805
Extend Differential Transform Methods for Solving Differential Equations with Multiple Delay
...Show More Authors

In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Derivation of Embedded Diagonally Implicit Methods for Directly Solving Fourth-order ODEs
...Show More Authors

EDIRKTO, an Implicit Type Runge-Kutta  Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of King Saud University - Science
Three iterative methods for solving second order nonlinear ODEs arising in physics
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network
...Show More Authors

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Swarm And Evolutionary Computation
Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy
...Show More Authors

View Publication
Scopus (194)
Crossref (167)
Scopus Clarivate Crossref
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Repeated Corrected Simpson's 3/8 Quadrature Method for Solving Fredholm Linear Integral Equations of the Second Kind
...Show More Authors

  In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example

View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
The Numerical Technique Based on Shifted Jacobi-Gauss-Lobatto Polynomials for Solving Two Dimensional Multi-Space Fractional Bioheat Equations
...Show More Authors

This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Oscillating Problems Using Modifying Runge-Kutta Methods
...Show More Authors

     This paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and amplification error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientific literature.

View Publication Preview PDF
Crossref
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Accurate Three Dimensional Coordinates Measurements Using Differential GPS Real Time Kinematic Mode
...Show More Authors

The accurate 3-D coordinate's measurements of the global positioning systems are essential in many fields and applications. The GPS has numerous applications such as: Frequency Counters, Geographic Information Systems, Intelligent Vehicle Highway Systems, Car Navigation Systems, Emergency Systems, Aviations, Astronomical Pointing Control, and Atmospheric Sounding using GPS signals, tracking of wild animals, GPS Aid for the Blind, Recorded Position Information, Airborne Gravimetry and other uses. In this paper, the RTK DGPS mode has been used to create precise 3-D coordinates values for four rover stations in Baghdad university camp. The HiPer-II Receiver of global positioning system was used to navigate the coordinate value. The results wil

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Bounded Solutions of the Second Order Differential Equation x ?+f(x) x ?+g(x)=u(t)
...Show More Authors

In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].

View Publication Preview PDF
Crossref