stract This paper includes studying (dynamic of double chaos) in two steps: First Step:- Applying ordinary differential equation have behaved chaotically such as (Duffing's equation) on (double pendulum) equation system to get new system of ordinary differential equations depend on it next step. Second Step:- We demonstrate existence of a dynamics of double chaos in Duffing's equation by relying on graphical result of Poincare's map from numerical simulation.
Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
An experimental study was conducted on pressure drop of water flow through vertical cylindrical packed beds in turbulent region and the influence of the operating parameters on its behavior. The bed packing was made of spherical and non-spherical particles (spheres, Rasching rings and intalox saddle) with aspect ratio range 3.46 D/dp 8.486 obtaining bed porosities 0.396 0.84 and Reynolds number 1217 21758. The system is consisted of 5 cm inside diameter Perspex column, 50 cm long; distilled water was pumped through the bed with flow rate 875, 1000, 1125, 1250,1375 and 1500 l/h and inlet water temperature 20, 30, 40 and 50 ˚C. The packed bed system was monitored by using LabVIEW program, were the result
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner, Taylor manner and block- by- block(2, 3, 5).
The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreThe one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the
This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
In this paper, the generation of a chaotic carrier by Lorenz model
is theoretically studied. The encoding techniques has been used is
chaos masking of sinusoidal signal (massage), an optical chaotic
communications system for different receiver configurations is
evaluated. It is proved that chaotic carriers allow the successful
encoding and decoding of messages. Focusing on the effect of
changing the initial conditions of the states of our dynamical system
e.i changing the values (x, y, z, x1, y1, and z1).
In this paper we design a Simulink model which can be evaluate the concentration of Copper, Lead, Zinc, Cadmium, Cobalt, Nickel, Crum and Iron. So, this model would be a method to determine the contamination levels of these metals with the potential for this contamination sources with their impact. The aim of using Simulink environment is to solve differential equations individually and as given data in parallel with analytical mathematics trends. In general, mathematical models of the spread heavy metals in soil are modeled and solve to predict the behavior of the system under different conditions.
This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type
... Show More