stract This paper includes studying (dynamic of double chaos) in two steps: First Step:- Applying ordinary differential equation have behaved chaotically such as (Duffing's equation) on (double pendulum) equation system to get new system of ordinary differential equations depend on it next step. Second Step:- We demonstrate existence of a dynamics of double chaos in Duffing's equation by relying on graphical result of Poincare's map from numerical simulation.
The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
The aim of this research is to identify the strengths and weaknesses of organizational health in the Iraqi Central Handball Federation from the point of view of those who manage the implementation of the annual curriculum, and adopt a descriptive approach in the method of studying the case. This is based on a sample of administrators of the Iraqi Handball Federation curriculum [trainers, governors, members, president, the 138 members of the Central Federation's Administrative Authority, the President, members of the sub-federations of the sports market (2021/2022) selected deliberately by 100% and then divided into statistical analysis sample (30), reconnaissance sample (10), and application sample (98)]. The regulatory health questionnaire
... Show MoreAbstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
In this study, the results of x-ray diffraction methods were used to determine the Crystallite size and Lattice strain of Cu2O nanoparticles then to compare the results obtained by using variance analysis method, Scherrer method and Williamson-Hall method. The results of these methods of the same powder which is cuprous oxide, using equations during the determination the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (28.302nm) and the lattice strain (0.03541) of the variance analysis method respectively and for the Williamson-Hall method were the results of the crystallite size (21.678nm) and lattice strain (0.00317) respectively, and Scherrer method which gives the value of c
... Show MoreThe research aimed to modeling a structural equation for tourist attraction factors in Asir Region. The research population is the people in the region, and a simple random sample of 332 individuals were selected. The factor analysis as a reliable statistical method in this phenomenon was used to modeling and testing the structural model of tourism, and analyzing the data by using SPSS and AMOS statistical computerized programs. The study reached a number of results, the most important of them are: the tourist attraction factors model consists of five factors which explain 69.3% of the total variance. These are: the provision of tourist services, social and historic factors, mountains, weather and natural parks. And the differenc
... Show MoreIn this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
The investigation of determining solutions for the Diophantine equation over the Gaussian integer ring for the specific case of is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.