Preferred Language
Articles
/
jih-763
Solving System of Linear Fredholm Integral Equations of Second Kind Using Open Newton-Cotes Formulas

In this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system.  Compare the results of suggested method with the results of another method (closed Newton-Cotes formula)    Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Mixed Volterra – Fredholm Integral Equation Using the Collocation Method

Volterra Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

Clarivate
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Numerical Solution for Linear Fredholm Integro-Differential Equation Using Touchard Polynomials

A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.

 

Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Oscillation and Asymptotic Behavior of Second Order Half Linear Neutral Dynamic Equations

     The oscillation property of the second order half linear dynamic equation was studied, some sufficient conditions were obtained to ensure the oscillation of all solutions of the equation. The results are supported by illustrative examples.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
Crossref (7)
Crossref
View Publication
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Approximate Solution of Some Classes of Integral Equations Using Bernstein Polynomials of Two-Variables

The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF
Publication Date
Thu Aug 31 2023
Journal Name
Journal Of Kufa For Mathematics And Computer