Let R be a commutative ring with identity . In this paper we study the concepts of essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-Dedekind modules . Among the results that we obtain is the following : M is an essentially quasi-Dedekind module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each , Kerf ≤e M implies f = 0 .
The aim of this paper is to introduce the concept of Dedekind semimodules and study the related concepts, such as the class of semimodules, and Dedekind multiplication semimodules . And thus study the concept of the embedding of a semimodule in another semimodule.
The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-cl
... Show MoreThis study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentrici
... Show MoreDespite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
In this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
In this paper, we show many conclusions on the Quasi-Hadamard products of new Subclass of analytic functions of β-Uniformly univalent function defined by Salagean q-differential operator.
In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.
Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.
Let S be a commutative ring with identity, and A is an S-module. This paper introduced an important concept, namely strongly maximal submodule. Some properties and many results were proved as well as the behavior of that concept with its localization was studied and shown.