In this paper , we study some approximation properties of the strong difference and study the relation between the strong difference and the weighted modulus of continuity
The aim of this paper is to study the best approximation of unbounded functions in the
weighted spaces
,
1, 0 ,
p
p L α
α ≥>.
Key Words: Weighted space, unbounded functions, monotone approximation
Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
The calculation. of the nuclear. charge. density. distributions. ρ(r) and root. mean. square. radius.( RMS ) by elastic. electron. scattering. of medium. mass. nuclei. such. as (90Zr, 92Mo) based. on the model. of the modified. shell. and the use of the probability. of occupation. on the surface. orbits. of level 2p, 2s eroding. shells. and 1g gaining. shells. The occupation probabilities of these states differ noticeably from the predictions of the SSM. We have found. an improvement. in the determination. of ground. charge. density. and this improvement. allow. more precise. identification. of (CDD) between. (92Mo- 90Zr) to illustrate the influence of the extra
... Show More In this paper we show that the function , () p fLI α ∈ ,0<p<1 where I=[-1,1] can be approximated by an algebraic polynomial with an error not exceeding , 1 ( , , ) kp ft n ϕ αω where
,
1 ( , , ) kp ft n ϕ αω is the Ditizian–Totik modules of smoothness of unbounded function in , () p LI
This paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time dela
... Show More