Content-based image retrieval has been keenly developed in numerous fields. This provides more active management and retrieval of images than the keyword-based method. So the content based image retrieval becomes one of the liveliest researches in the past few years. In a given set of objects, the retrieval of information suggests solutions to search for those in response to a particular description. The set of objects which can be considered are documents, images, videos, or sounds. This paper proposes a method to retrieve a multi-view face from a large face database according to color and texture attributes. Some of the features used for retrieval are color attributes such as the mean, the variance, and the color image's bitmap. In addition, the energy, and the entropy which based on the gray level values in an image is too considered as the features. In addition to statistical approaches, models of artificial intelligence produce a desirable methodology that enhances performance in information retrieval systems, and the genetic algorithm depicts one of them. The GA is preferred for its power and because it can be used without any specific information of the domain. The experimental results conclude that using GA gives a good performance and it decreases the average search time to (60.15 milliseconds) compared with (722.25milliseconds) for traditional search.
Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.
This paper offers a monthly prediction method for planning production, inventory, workforce, sales and prices until N years. Each monthly decision will depend on last month, decisions and take in consideration the future forecasted demand. The manager can run the program in any month within a year. This method is executed by computer programming technique to maximize profits.
A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
Genetic diversity was studied in 31 Iraqi common reed samples , which were collected from Iraqi marshes in Basrah , Messan and Thi-Qar provinces and also from different areas in Baghdad province . Random amplified polymorphic DNA (RAPD) technique was used for evaluation of genetic diversity between collected samples . Seven primers were used for polymorphism detecting between common reed samples . The results revealed 102 bands for the all samples when RAPD-PCR was used . The percentage rate for the monomorphic bands is 6.86% , while the percentage rate for the polymorphic bands is 93.13% , and the numbers of these bands are ranging between 10 to 17 for each used primer . The UBC1 primer gave the highest number of poly
... Show MoreIn this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll
... Show More