Preferred Language
Articles
/
jih-580
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films
...Show More Authors

The structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was found to be in the
range to (2.96-3.06)eV with increasing annealing temperatures. The electrical properties of
these films have been studied, it was observed that D.C conductivity at room temperature
decreases with the increase of annealing temperatures, and the mechanism of conductivity
occurs in two ranges of temperature, from Hall measurements the conductivity for all samples
of ZnS films is n-type.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Investigation of the Structural, Optical and Electrical Properties of AgInSe2 Thin Films
...Show More Authors

Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Annealing Times on the Structural and Optical Properties of PbO Thin Films Prepared by D.C Sputtering
...Show More Authors

     In this work, lead oxide (PbO) thin films were deposited using D.C. sputtering method on a surface of glass substrates and then thermally annealed at a temperature of 473K with annealing times of (1,2 and 3) hours. The structural, morphological, and optical properties of films were determined using X-ray diffraction (XRD), atomic force microscopy (AFM), FT-IR, and UV-Visible spectroscopy. The structure studies confirmed that PbO films are polycrystalline structures in an orthorhombic phase with average grain size (24.51, 29.64, 46.49, 16) nm with increasing annealing time. From AFM, the roughness of the film surface  (3.26, 1.76, 1.61, 1.79) nm as the film annealing time increases. The optical band gap values of the PbO thin fi

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Optical properties of ZnS and PEDOT thin films
...Show More Authors

Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th

... Show More
Scopus (2)
Scopus
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The Effect of Annealing on The Structural and Optical Properties of Copper Oxide Thin Films Prepared by SILAR Method
...Show More Authors

Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Effect of annealing and chemical treatment on structural and optical properties of CuPcTs/PEDOT:PSS (BHJ Blend) thin films
...Show More Authors

In this work, The effect of annealing treatment at different temperatures (373, 423 and 473) K and chemical treatment with talwen at different immersion time (40, 60 and 80) min on structural and optical properties of the bulk heterojunction (BHJ) blend copper phthalocyanine tetrasulfonic acid tetrasodium salt/poly dioxyethylenethienylene doped with polystyrenesulphonic acid (CuPcTs/PEDOT:PSS) thin films were investigated. The films were fabricated using spin coating technique. X-ray diffraction (XRD) measurements displayed only one peak at 2θ =4.5o corresponding to (001) direction which has dhkl larger than for standard CuPcTs. The dhkl increase then decrease with increasing annealing temperature and
the time of chemical treatment w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Study The Effect of Annealing on Structural and Optical Properties of Indium Selenide (InSe) Thin Films Prepared by Vacuum Thermal Evaporation Technique
...Show More Authors

In this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phase with crystallites size of 17.459 nm. Th

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Influence of Nd and Ce doping on the structural, optical and electrical properties of V2O5 thin films
...Show More Authors

Nano-structural of vanadium pentoxide (V2O5) thin films were
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce
doped vanadium oxide films were prepared, adding Neodymium
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate
solution. These precursor solutions were used to deposit un-doped
V2O5 and doped with Nd and Ce films on the p-type Si (111) and
glass substrate at 250°C. The structural, optical and electrical
properties were investigated. The X-ray diffraction study revealed a
polycrystalline nature of the orthorhombic structure with the
preferred orientation of (010) with nano-grains. Atomic force
microscopy (AFM) was used to characterize the morphology of the
films. Un-do

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 22 2010
Journal Name
Journal Of Al-nahrain University
STUDY THE STRUCTURAL AND ELECTRICAL PROPERTIES OF CdTe:Ag THIN FILMS
...Show More Authors

The influence of silver doped n-type polycrystalline CdTe film with thickness of 200 nm and rate deposition of 0.3 nm.s -1 prepared under high vacuum using thermal co-evaporation technique on its some structural and electrical properties was reported. The X- ray analysis showed that all samples are polycrystalline and have the cubic zinc blend structure with preferential orientation in the [111] direction. Films doping with impurity percentages (2, 3, and 4) %Ag lead to a significant increase in the carrier concentration, so it is found to change from 23.493 108 cm -3 to 59.297 108 cm -3 for pure and doped CdTe thin films with 4%Ag respectively. But films doping with impurity percentages above lead to a significant decrease in the electrica

... Show More
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study The Structural And Electrical Properties Of CdTe:In Thin Films
...Show More Authors

 Indium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.

View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Iraqi Journal Of Physics
Effect of thermal annealing and laser radiation on the optical properties of AgAlS2 thin films
...Show More Authors

Effect of the thermal annealing at 400oC for 2 hours and Argon laser radiation for half hour on the optical properties of AgAlS2 thin films, prepared on glass slides by chemical spray pyrolysis at 360oC with (0.18±0.05) μm thickness .The optical characteristics of the prepared thin films have been investigated by UV/Vis spectrophotometer in the wavelength range (300 – 1100)nm .The films have a direct allow electronic transition with optical energy (Eg) values decreased from (2.25) eV for untreated thin films to (2.10) eV for the annealed films and to (2.00) eV for the radiated films. The maximum value of the refractive index (n) for all thin films are given about (2.6). Also the extinction coefficient (K) and the real and imaginary d

... Show More
View Publication Preview PDF