Preferred Language
Articles
/
oRdC-5ABVTCNdQwCgJHM
Optical properties of ZnS and PEDOT thin films

Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that the highest opacity of the insulating phase is achieved at the ultraviolet region and it reduces for the metal phase. Besides, the results demonstrate that the opacity possesses a redshift during the changes at the three phases. Regarding the infrared region, the lowest opacity value is achieved at the insulator phase and it increases to the highest value at the metal phase. In the visible region, the opacity behavior remains similar in the three phases. It is worth noting that the lowest opacity is found for thinner nanofilm. Since both the refractive index and the extinction index are among the most essential optical constants, hence, both of them were compared with the experiment results, and an excellent agreement is achieved between them.

Scopus
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Electrical Properties of ZnS Thin Films

The effect of annealing temperature (Ta) on the electrical properties like ,D.C electrical conductivity (σ DC), activation energy (Ea),A.C conductivity σa.c ,real and imaginary (ε1,ε2) of dielectric constants ,relaxation time (τ) has been measured of ZnS thin films (350 nm) in thickness which were prepared at room temperature (R.T) using thermal evaporation under vacuum . The results showed that σD.C increases while the activation energy values(Ea) decreases with increasing of annealing temperature.(Ta) from 303- 423 K .
The density of charge carriers (nH) and Hall mobility (μH) increases also with increasing of annealing temperature Hall effect measurements showed that ZnS films were n-type converted to p-type at high annealin

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 26 2012
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films

The structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t

... Show More
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of Annealing Temperature on the Structural, Optical and Electrical Properties of ZnS Thin Films

The structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
The Effects of ? – Rays on The Optical Constants of ZnS Thin Films

ZnS thin films were grown onto glass substrates by flash evaporation technique, the effects of ? – rays on the optical constants of ZnS these films were studied. It was found that ? – rays affected all the parameters under investigation.

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Optical properties of CdO thin films

Cadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.

Crossref
View Publication Preview PDF
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
Optical Properties for SeTe Thin Films

Chalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .

Crossref
View Publication Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
Journal Of Nanotechnology & Advanced Materials
Structural and optical properties of SnS thin films

Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate

... Show More
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study of the Optical Properties for ZnS Thin Film Irradiated by CO2 Laser

In this study ZnS thin film was prepared by using thermal evaporation vacuum technique under the pressure (10-6) Torr on glass substrate at room temperature and annealing at 523 K Samples were irradiated to CO2 laser of power (1 watt) and wave length (10.6) μm at distance 10 cm from the source during (5 sec). The absorbance spectra was recorded by using UV-visible spectrophotometer and used to calculated some of optical properties investigated including their transmittance, reflectance spectra, energy gap, and extinction coefficient. From the result of thin films samples at room temperature and at 523 K, we conclude that the irradiation by laser causes a decrease in the transmittance and increasing in reflection and extinction coeffic

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
The structure and optical properties of CdSe:Cu Thin Films

A polycrystalline CdSe thin films doped with (5wt%) of Cu was fabricated using vacuum evaporation technique in the substrate temperature range(Ts=RT-250)oC on glass substrates of the thickness(0.8?m). The structure of these films are determined by X-ray diffraction (XRD). The X-ray diffraction studies shows that the structure is polycrystalline with hexagonal structure, and there are strong peaks at the direction (200) at (Ts=RT-150) oC, while at higher substrate temperature(Ts=150-250) oC the structure is single crystal. The optical properties as a function of Ts were studied. The absorption, transmission, and reflection has been studied, The optical energy gap (Eg)increases with increase of substrate temperature from (1.65

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Substrate Temperature Influence on Optical Properties of C60 Thin Films Within the Visible Range

Fullerene thin films of about 200 nm thicknesses have been deposited by thermal evaporation method on soda lime glass at substrate temperature 303 and 403K under pressure about 10-5 mbar. This study concentrated on the influence of substrate temperature on the optical properties of C60 thin films within the visible range. Optical characterization has been carried out at room temperature using the absorption spectra, at normal incidence, in range (200-900) nm.

The absorption and extinction coefficients of the samples have been evaluated according to the variation in the UV- Visible spectrum. Increasing substrate temperature causes decreasing in optical band gap energy, for direct allowed tran

... Show More
Crossref (1)
Scopus Crossref
View Publication Preview PDF