The structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was found to be in the
range to (2.96-3.06)eV with increasing annealing temperatures. The electrical properties of
these films have been studied, it was observed that D.C conductivity at room temperature
decreases with the increase of annealing temperatures, and the mechanism of conductivity
occurs in two ranges of temperature, from Hall measurements the conductivity for all samples
of ZnS films is n-type.
The Indian costus plasma properties are investigated including electron temperature (Te), "electron density (ne)", "plasma frequency (fp)", " Debye sphere length", and amount of Debye(Nd), using the spectrum of optical emission technique. There are several energies used, with ranging from 300 to 600 mJ. The Boltzmann Plot is used to calculate the temperature; where as Stark's Line Broadening is used to calculate the electron density. The Indian costus was spectroscopically examined in the air with the laser at 10 cm away from the target and the optical fiber at 0.5 cm away. The results were obtained for an electron temperature range of (1.8-2.2) electron volts (ev) and a wavelength range of (300-600) nm. The XRF analysis reveals th
... Show MoreIn the last few years, fiber-coupled diode lasers have shown massive applications in many fields of communication and scientific research. Particularly, the pumping of solid-state lasers is a key application for more powerful diode lasers enabling good solutions in various laser micro methods like metal cutting, sintering, structuring as well as drilling. In this work, a simple beam shaping method is demonstrated for coupling a high-power semiconductor laser diode into multi-mode fiber optic using optical lenses. The optical lenses as beam transformation components are utilized to reshape the asymmetrical irradiation of the diode laser bar and to circularize the laser beam. Using this simple method, compact, high-output-power, and high-b
... Show More