Preferred Language
Articles
/
jih-56
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins
...Show More Authors

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of blends nanocomposites are significantly lower compared to that of the(UPR and 3% TiO2), semi-interpenetrating UPR/Epoxy blends (semi-IPNs) for one type of new epoxy [P2]was prepared and noticed the blend nanocomposites show higher dielectric breakdown strength than the semi- IPNs (UPR/Epoxy) at low loading of new epoxies  but the thermal conductivity is a higher than the semi- IPNs UPR/Epoxy at all loading. Thermogravimetric analysis (TGA) was employed to study the thermal properties of the blended nanocomposites.   

View Publication
Publication Date
Sun Jun 08 2025
Journal Name
Journal Of Physical Education
Exercises With Different Ranges Of Motion With Significance Of Electrical Activity for Muscle in Strength With Speed Of Lower Limbs For Weight Lifters Of Physical Strength
...Show More Authors

View Publication
Publication Date
Sun Sep 02 2012
Journal Name
Baghdad Science Journal
Study Of Factors Affecting The Thermal Conductivity Of Iraqi Bentonite
...Show More Authors

Thermal conductivity of compacted bentonite is one of the most important properties where this type of clay is proposed for use as a buffer material. In this study, Lee's disc method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results have been analyzed to observe the three major factors affecting the thermal conductivity of bentonite buffer material. While the clay density reaches to a target value, the measurement is taken to evaluate the thermal conductivity. By repeating this procedure, a relationship between clay dry density and thermal conductivity has been established in specimens after adjusting the water contents of the bentonite by placing its specimens in a drying oven for diffe

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 09 2014
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Effect of Thickness on the Electrical Conductivity and Hall Effect Measurements of (CIGS) films
...Show More Authors

The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu

... Show More
Preview PDF
Publication Date
Thu Jan 07 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technology
Effect Of thickness On The Structure And Electrical Conductivity Properties Of CuInSe2 Thin Films
...Show More Authors

The influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness

... Show More
Preview PDF
Publication Date
Wed Apr 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Thickness on the Electrical Conductivity and Hall Effect Measurements of (CIGS) Films
...Show More Authors

   The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy.     The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increase films thickness was fond to increase the electrical conductivity whereas the activation energy (Ea) would vary with f

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Thickness on Electrical Conductivity and Optical Constant of Fe2O3 Thin Films
...Show More Authors

   In this research the electrical conductivity and optical measurements were made on the Iron Oxide (Fe2O3) films prepared by chemical spray pyrolysis method as a function of thickness (250, 350, 450, and 550)  20 nm.    The measurements of electrical conductivity (σ), activation energies (Ea1, Ea2),and optical constant such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm have been investigated on (Fe2O3) thin films as a function of thickness. All films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thi

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Evaluation of the thermal conductivity of middle part of Iraqi soil
...Show More Authors

Thermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water c

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Effect of gamma irradiation and ZnO nano particles on the A.C electrical conductivity of polyaniline
...Show More Authors

Conducting polyaniline / ZnO nano composites are synthesized
using a simplified cheap method with one step in –situ chemical
polymerization, and AC conductivity (σac) of the prepared samples is
studied in the range of frequency from 50 Hz to 15MHz.). The
presence of polarons in the conjugated polymer chain are responsible
for the ac conductivity is reliance on the frequency in these
composites. The effect of increasing the ZnO nano particle
concentration irradiation and gamma radiation on the electric
conductivity was analyzed. The result showed that the
nanocomposite prepared has the highest conductivity, from pure
polyaniline and the exponential factor S was found increasing with
ZnO content it was 0

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Mar 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Influence of Annealing and Doping by Copper on Electrical Conductivity of CdTe Thin Films
...Show More Authors

In this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm.      The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2),  have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed.     The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases where

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Effective Bed Thermal Conductivity and Heat Transfer Coefficient in Fluidized Beds
...Show More Authors

Experimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connecte

... Show More
View Publication Preview PDF