Preferred Language
Articles
/
jih-56
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins
...Show More Authors

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of blends nanocomposites are significantly lower compared to that of the(UPR and 3% TiO2), semi-interpenetrating UPR/Epoxy blends (semi-IPNs) for one type of new epoxy [P2]was prepared and noticed the blend nanocomposites show higher dielectric breakdown strength than the semi- IPNs (UPR/Epoxy) at low loading of new epoxies  but the thermal conductivity is a higher than the semi- IPNs UPR/Epoxy at all loading. Thermogravimetric analysis (TGA) was employed to study the thermal properties of the blended nanocomposites.   

View Publication
Publication Date
Wed Oct 13 2021
Journal Name
Egyptian Journal Of Chemistry
Synthesis and Characterization and Thermal Properties of New Linked Azo-Phenol-Formaldehyde Resins
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advanced Composites Letters
Enhanced thermal and electrical properties of epoxy/carbon fiber–silicon carbide composites
...Show More Authors

The silicon carbide/carbon fiber (SiC/CF) hybrid fillers were introduced to improve the electrical and thermal conductivities of the epoxy resin composites. Results of Fourier transform infrared spectroscopy revealed that the peaks at 3532 and 2850 cm−1 relate to carboxylic acid O–H stretching and aldehyde C–H stretching appearing deeper with an increased volume fraction of SiC. Scanning electron microscopic image shows a better interface bonding between the fiber and the matrix when the volume fraction of SiC particles are increased. As frequency increases from 102 Hz to 106 Hz, dielectric constants decrease slightly. Dissipation factor (tan δ) values keep low a

... Show More
View Publication
Scopus (28)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Materials Science-poland
Electrical and thermal characteristics of MWCNTs modified carbon fiber/epoxy composite films
...Show More Authors
Abstract<p>To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm<sup>−1</sup> corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm<sup>−1</sup> is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm<sup>−1</sup> corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm<sup>−1</sup> and 2862 cm<sup>−1</sup> ar</p> ... Show More
View Publication
Scopus (35)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
The Effects of micro Aluminum fillers In Epoxy resin on the thermal conductivity
...Show More Authors

View Publication
Scopus (25)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
The effect of Aluminum Oxide, Iron Oxide on the thermal conductivity of (Epoxy-Aluminum Oxide, Epoxy-Iron Oxide) Composites
...Show More Authors

Thermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3

View Publication Preview PDF
Publication Date
Thu Jun 07 2018
Journal Name
Applied Physics A
Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite
...Show More Authors

View Publication
Crossref (56)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Effect of SiC particles and water absorption on thermal conductivity of epoxy reinforcement by (bi-directional) glass fiber
...Show More Authors

In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Study of effect acidic solution (HCl) and (EP/Al2O3 & EP/ TiO2) hybrid on thermal conductivity of epoxy resin.
...Show More Authors

This research studies the effect of adding micro, nano and hybrid by ratio (1:1) of (Al2O3,TiO2) to epoxy resin on thermal conductivity before and after immersion in HCl acid for (14 day) with normality (0.3 N) at weight fraction (0.02, 0.04, 0.06, 0.08) and thickness (6mm). The results of thermal conductivity reveled that epoxy reinforced by (Al2O3) and mixture (TiO2+Al2O3) increases with increasing the weight fraction, but the thermal conductivity (k) a values for micro and Nano (TiO2) decrease with increasing the weight fraction of reinforced, while the immersion in acidic solution (HCl) that the (k) values after immersion more than the value in before immersion.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Effect of Nanocomposites TiO2 addition on the Dielectric Properties of Epoxy resin
...Show More Authors

Sheets of Epoxy (EP) resin with addition of TiO2 of grain size (1.5μm, and 50nm) and weight percentage (1%, 3%, and 5%) were prepared. Discs of 20mm diameter and 3mm thickness were cut for dielectric measurements. Dielectric properties (dielectric constant, dispassion factor and electrical conductivity) over the frequency range 102 -106 Hz were measured.
Comparison was made between the effect of micro and nano particles of TiO2 on the dielectric properties of EP composites with different weight percentage. Epoxy composites with micro sized particles of TiO2 were observed to have the better values of dielectric properties.

View Publication Preview PDF
Publication Date
Mon Apr 03 2023
Journal Name
Polymer Composites
Effect of silver nanoparticles on structural, thermal, electrical, and mechanical properties of poly(vinyl alcohol) polymer nanocomposites
...Show More Authors

View Publication
Scopus (24)
Crossref (26)
Scopus Clarivate Crossref