This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of blends nanocomposites are significantly lower compared to that of the(UPR and 3% TiO2), semi-interpenetrating UPR/Epoxy blends (semi-IPNs) for one type of new epoxy [P2]was prepared and noticed the blend nanocomposites show higher dielectric breakdown strength than the semi- IPNs (UPR/Epoxy) at low loading of new epoxies but the thermal conductivity is a higher than the semi- IPNs UPR/Epoxy at all loading. Thermogravimetric analysis (TGA) was employed to study the thermal properties of the blended nanocomposites.
The researchers wanted to make a new azo imidazole as a follow-up to their previous work. The ligand 4-[(2-Amino-4-phenylazo)-methyl]-cyclohexane carboxylic acid as a derivative of trans-4-(aminomethyl) cyclohexane carboxylic acid diazonium salt, and synthesis a series of its chelate complexes with metalions, characterized these compounds using a variety technique, including elemental analysis, FTIR, LC-Mass, 1H-NMRand UV-Vis spectral process as well TGA, conductivity and magnetic quantifications. Analytical data showed that the Co (II) complex out to 1:1 metal-ligand ratio with square planner and tetrahedral geometry, respectively while 1:2 metal-ligand ratio in the Cu(II), Cr(III), Mn(II), Zn(II), Ru(III)and Rh(III)complexes
... Show MoreThree phenol-formaldehyde resins having pendant maleimides were prepared by poly condensation of N-(hydroxyphenyl) maleimides with formaldehyde under conditions similar to those in Novolac preparation. The prepared resins were modified by two methods, the first one includes esterification of phenolic hydroxyl groups in the prepared resins via their treatment with benzoyl, acryloyl, methacryloyl and cinnamoyl chlorides respectively in the presence of triethylamine, while the second modification includes free radical polymerization of vinylic bonds in the prepared resins to produce cross-linked thermally stable polymers.
Search Results at the International Journal of Science and Research (IJSR)
Background: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreIn the present work polymer electrolytes were formulated using the solvent casting technique. Under special conditions, the electrolyte content was of fixed ratio of polyvinylpyrolidone (PVP): polyacrylonitrile (PAN) (25:75), ethylene carbonate (EC) and propylene carbonate (PC) (1:1) with 10% of potassium iodide (KI) and iodine I2 = 10% by weight of KI. The conductivity was increased with the addition of ZnO nanoparticles. It is also increased with the temperature increase within the range (293 to 343 K). The conductivity reaches maximum value of about (0.0296 S.cm-1) with (0.25 g) ZnO. The results of FTIR for blend electrolytes indicated a significant degree of interaction between the polymer blend (PVP and PAN)
... Show MoreDissolution of gypsum rock in water is significant, which may result in hydrocarbon reservoir formation and evaporate deposits. However, the complexity of the gypsum dissolution process is still of interest because of its uncleanness that requires more critical analysis. The objectives of this experimental study are emphasis on the dissolution characteristics of gypsum rock under room temperature and by various types of water; namely: deionized, tap, fresh, acidic, well, and normal rainwatre. In addition, the influences of dissolution on gypsum rock's mechanical and physical characteristics. Gypsum rock was obtained from Agjalar area, in the southwest of Sulaymaniyah city, Northern Iraq. Experimental results show that we
... Show MoreBack ground: Glass ionomer materials lack resistance to wear and pressure and are susceptible to moisture during the initial stages of setting and dehydration. So this study was done to assess diametral tensile strength and microhardness of glass ionomer reinforced by different amounts of hydroxyapatite. Materials and methods: In this study a hydroxyapatite material was added to glass monomer cement at different ratios: 10%, 15%, 20%, 25% and 30% (by weight). The diametral tensile strength test described by the British standard specification for zinc polycarboxylate cement was used in this study and the microhardness test was performed using Vickers microhardness testing machine and the microhardness values were calculated and statistical c
... Show MoreThe influence of the grounded electrode area on the ignition voltage in capcitively coupled radio frequency discharge at 13.56 MHz in argon gas is studied experimentally. The results indicate a systematic decrease of the breakdown voltage with increasing grounded electrode area for the same pd value. Results show that the secondary ionization coefficient γ increases with the increase of grounded electrode area. Furthermore, results also the discharge current at the breakdown voltage increases almost linearly with the increase of electrode area suggesting an almost constant current density.
Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show More