In this paper, the problem of scheduling jobs on one machine for a variety multicriteria
are considered to minimize total completion time and maximum late work. A set of n
independent jobs has to be scheduled on a single machine that is continuously available from
time zero onwards and that can handle no more than one job at a time. Job i,(i=1,…,n)
requires processing during a given positive uninterrupted time pi, and its due date d
i.
For the bicriteria problems, some algorithms are proposed to find efficient (Pareto)
solutions for simultaneous case. Also for the multicriteria problem we proposed general
algorithms which gives efficient solutions within the efficient range
In this study, active knife and fixed knife of single-row disc silage machine has three different clearance C1, C2 and C3 (1, 3 and 5 mm) and it is tried in three different working speed V1, V2 and V3 (1.8, 2.5 and 3.7 km / h) and PTO speed (540 min-1) and machine's fuel consumption (l/h), average power consumption (kW), field energy consumption (kW/da), product energy consumption (kW/t), field working capacity (da/h), product working capacity (t/h) and Chopping size distribution characteristics of the fragmented material were determined. It has been found that knife-counter knife clearances smaller than 3 mm (1 mm) and larger (5 mm) have a negative effect on machine performance in general. In terms of fuel and power consumptions, the m
... Show MoreAdministrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreTransmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MoreA group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.
COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
This paper presents an IoT smart building platform with fog and cloud computing capable of performing near real-time predictive analytics in fog nodes. The researchers explained thoroughly the internet of things in smart buildings, the big data analytics, and the fog and cloud computing technologies. They then presented the smart platform, its requirements, and its components. The datasets on which the analytics will be run will be displayed. The linear regression and the support vector regression data mining techniques are presented. Those two machine learning models are implemented with the appropriate techniques, starting by cleaning and preparing the data visualization and uncovering hidden information about the behavior of
... Show MoreFinding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith
... Show MorePolymorphisms in the genes of G-protein subunit beta 3 (GNB3); rs5443, tryptophan hydroxylase 1 (TPH1); rs211105 and rs4537731, tryptophan hydroxylase 2 (TPH2); rs4570625 and sodium voltage-gated channel alpha subunit 5 (SCN5A); rs1805124, have known to cause the abnormalities in the gastrointestinal tract that are implicated to irritable bowel syndrome (IBS) predisposition. Upfront genetic polymorphism genotyping in IBS-related gene polymorphisms will help to intervene and guide the decision-making in the management of IBS patients. This study aimed to develop a genotyping method to detect the respective polymorphisms using nested allele-specific multiplex polymerase chain reaction (NASM-PCR). A combi
... Show MoreThe three parameters distribution called modified weibull distribution (MWD) was introduced first by Sarhan and Zaindin (2009)[1]. In theis paper, we deal with interval estimation to estimate the parameters of modified weibull distribution based on singly type one censored data, using Maximum likelihood method and fisher information to obtain the estimates of the parameters for modified weibull distribution, after that applying this technique to asset of real data which taken for Leukemia disease in the hospital of central child teaching .