In this paper we prove a theorem about the existence and uniqueness common fixed point for two uncommenting self-mappings which defined on orbitally complete G-metric space. Where we use a general contraction condition.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
The focus of this article, reviewed a generalized of contraction mapping and nonexpansive maps and recall some theorems about the existence and uniqueness of common fixed point and coincidence fixed-point for such maps under some conditions. Moreover, some schemes of different types as one-step schemes ,two-step schemes and three step schemes (Mann scheme algorithm, Ishukawa scheme algorithm, noor scheme algorithm, .scheme algorithm, scheme algorithm Modified scheme algorithm arahan scheme algorithm and others. The convergence of these schemes has been studied .On the other hands, We also reviewed the convergence, valence and stability theories of different types of near-plots in convex metric space.
The purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,
In this paper, we show that for the alternating group An, the class C of n- cycle, CC covers An for n when n = 4k + 1 > 5 and odd. This class splits into two classes of An denoted by C and C/, CC= C/C/ was found.
Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
Abstract. The purpose of this work is to introduce and investigate new concepts of mappings namely nano paracompactmappings, nano locally limited, nano h-locally limited and finally nano-perfect in nano topology by using nano-closed sets. As well as, the relation between these concepts of mappings have been study in nano topology. Additionally, the nano topology groups of the types and advances results which are introduces in this work are very vital. We also presented the type of nano Lindeloff mappings, and the relations of them was introduce and discussed with several characteristics related it. Nano morphism also introduce.
Abstract. Nano-continuous mappings have a wide range of applications in pure and applied sciences. This paper aims to study and investigate new types of mappings, namely nano-para-compact, completely nano-regular, nano-para-perfect, and countably nano-para-perfect mappings in nano-topological spaces using nano-open sets. We introduce several properties and basic characterizations related to these mappings, which are essential for proving our main results. Additionally, we discuss the relationships among these types of mappings in nano-topological spaces. We also introduce the concept of nano-Ti-mapping, where i = 0, 1, 2, nano-neighborhood separated, and nano-functionally separated, along with various other definitions. We explore the relat
... Show More