Let M be an R-module, where R is commutative ring with unity. In this paper we study the behavior of strongly hollow and quasi hollow submodule in the class of strongly comultiplication modules. Beside this we give the relationships between strongly hollow and quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreLet R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreIn previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the rel
... Show MoreLet R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let