Preferred Language
Articles
/
jih-520
Design of Electrostatic Unipotential Lens Accelerating And Decelerating Operated Under Finite And Infinite Magnification Conditions

  Theoretical study computerized has been carried out in field electron optics , to design electrostatic unipotential lens , the inverse problem is important method in the design of electrostatic lenses by suggesting an axial electrostatic potential distribution using polynomial function. The paraxial –ray equation is solved to obtain the trajectory particles that satisfy the suggested potential function. In this research , design electrostatic unipotential lens three-electrode accelerating and decelerating L=5 mm operated under finite and infinite magnification conditions. The electrode shape of the electrostatic lens was then determined from the solution of the Laplace's equation's. the results showed low values of spherical and chromatic aberrations which are considered as good criteria for good design. `

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Transactions On Power Delivery
Optimal Dielectric Design of Medium Voltage Toroidal Transformer with Electrostatic Shield under Fast Front Excitation

Accurate calculation of transient overvoltages and dielectric stresses from fast-front excitations is required to obtain an optimal dielectric design of power components subjected to these conditions, which are commonly due to switching and lightning, as well as utilization of power-electronic devices. Toroidal transformers are generally used at the low voltage level. However, recent investigations and developments have explored their use at the medium voltage level. This paper analyzes the model-based improvement of the insulation design of medium voltage toroidal transformers. Lumped and distributed parameter models are used and compared to predict the transient response and dielectric stress along the transformer winding. The parameters

... Show More
Scopus Clarivate Crossref
Publication Date
Mon Apr 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Magnetic Lens Design Using Analytical Target Field Function

Analytical field target function has been considered to represent the axial magnetic field distribution of double polepiece symmetric magnetic lens. In this article, with aid of the proposed target function, the syntheses procedure is dependent. The effect of the main two coffectin optimization parameters on the lens field distribution, polepieces shape, and the objective focal prosperities for lenses operated under zero magnification mode has been studied. The results have shown that the objective properties evaluated in sense of the inverse design procedure are in an excellent correspondence with that of analysis approach. Where the optical properties enhance as the field distribution of the electron lens distributed along a narrow axi

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Space Charge Effect for Design Electron Gun Using Five Electrode Immersion Electrostatic Lenses

 Computer theoretical study has been carried out on the design of five electrode immersion electrostatic lens used in electron gun application. The finite element method (FEM) is used in the solution of the Poisson's equation fro determine axial potential distribution, the electron trajectory under Zero magnification condition .      The optical  properties : focal length ,spherical and chromatic aberrations are calculated,From studying the properties of the designed electron gun. we have good futures for these  electron gun where are abeam current 4*10-4A    can be supplied by using cathode tip of radius 100 nm.

View Publication Preview PDF
Publication Date
Wed Apr 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design for Two Electrodes Electrostatic Mirror by using the Bimurzaev Technique

This paper describes theoretical modeling of electrostatic mirror based on two cylindrical electrodes, A computational investigation has been carried out on the design and properties of the electrostatic  mirror. we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The  beam path  by using the Bimurzaev technique have been investigated as a mirror trajectory with the aid of Runge – Kutta  method. the electrode shape of mirror two electrode has been determined by using package SIMION computer program . The spherical and chromatic aberrations coefficients of mirror has been computed and normalized in terms of the focal length. The choice of the mirror depends on the op

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
A proposed Mathematical Expression for Computer Design of Electrostatic Mirror

A computational investigation has been carried out on the design and properties of the electrostatic mirror. In this research, we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The electron beam path under zero magnification condition had been investigated as mirror trajectory with the aid of fourth – order – Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements, i.e. each optical element in optical system has suffer from the chromatic aberration, for this case, it is use to operate the mirror in optical system at various values

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Design and study the effect of inner bore diameter on the magnetic and optical properties of the unipolar lens

    Many designs have been suggested for unipolar magnetic lenses based on changing the width of the inner bore and fixing the other geometrical parameters of the lens to improve the performance of unipolar magnetic lenses. The investigation of a study of each design included the calculation of its axial magnetic field the magnetization of the lens in addition to the magnetic flux density using the Finite Element Method (FEM) the Magnetic Electron Lenses Operation (MELOP) program version 1 at three different values of current density (6,4,2 A/mm2). As a result, the clearest values and behaviors were obtained at current density (2 A/mm2). it was found that the best magnetizing properties, the high

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Oct 20 2010
Journal Name
The International Journal Of Advanced Manufacturing Technology
Finite element modeling and simulation of proposed design magneto-rheological valve

Magneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef

... Show More
Scopus (35)
Crossref (29)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
Space-Charge Effect on the Theoretical Design of Enzil Lens

The presentwork is a theoretical study in the field of charged particle optics. It concentrates on the design of electrostatic enzil lens for focusing charge particles beams, using inverse method in designingthe electrostatic lens. The paraxial ray equation was solved to obtain the trajectory of the particles, the optical properties such as the focal length and spherical and chromatic aberration coefficients were determined. The shape of the electrode of the electrostatic lens were determined by solving poison equation and the results showed low values of spherical and chromatic aberrations, which are considered as good criteria for good design.

View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Synthesis and Characterization of Titanium Dioxide Nanoparticles under Different pH Conditions

Ethanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Synthesis and Characterization of Titanium Dioxide Nanoparticles under Different pH Conditions

Ethanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr

... Show More
Crossref (4)
Crossref