In this paper, we applied the concept of the error analysis using the linearization method and new condition numbers constituting optimal bounds in appraisals of the possible errors. Evaluations of finite continued fractions, computations of determinates of tridiagonal systems, of determinates of second order and a "fast" complex multiplication. As in Horner's scheme, present rounding error analysis of product and summation algorithms. The error estimates are tested by numerical examples. The executed program for calculation is "MATLAB 7" from the website "Mathworks.com
The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreFour electrodes were synthesized based on molecularly imprinted polymers (MIPs). Two MIPs were prepared by using the diclofenac sodium (DFS) as the template, 2-hydroxy ethyl metha acrylate(2-HEMA) and 2-vinyl pyridine(2-VP) as monomers as well as divinyl benzene and benzoyl peroxide as cross linker and initiator respectively. The same composition used for prepared non-imprinted polymers (NIPs) but without the template (diclofenac sodium). To prepared the membranes electrodes used different plasticizers in PVC matrix such as: tris(2-ethyl hexyl) phosphate (TEHP), tri butyl phosphate (TBP), bis(2-ethyl hexyl) adipate (BEHA) and tritolyl phosphate (TTP). The characteristics studied the slop, detection limit, life time and linearity range of DF
... Show MoreTheoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].
In this paper, the bi-criteria machine scheduling problems (BMSP) are solved, where the discussed problem is represented by the sum of completion and the sum of late work times simultaneously. In order to solve the suggested BMSP, some metaheurisitc methods are suggested which produce good results. The suggested local search methods are simulated annulling and bees algorithm. The results of the new metaheurisitc methods are compared with the complete enumeration method, which is considered an exact method, then compared results of the heuristics with each other to obtain the most efficient method.
This article aims to introducenumerical study of two different incompressible Newtonian fluid flows. The first type of flow is through the straight channel, while the second flow is enclosed within a square cavity and the fluid is moved by the upper plate at a specific velocity. Numerically, a Taylor-Galerkin\ pressure-correction finite element method (TGPCFEM) is chosen to address the relevant governing equations. The Naiver-Stoke partial differential equations are usually used to describe the activity of fluids. These equations consist of the continuity equation (conservation of mass) and the time-dependent conservation of momentum, which are preserved in Cartesian coordinates. In this study, the effect of Reynolds number (
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
Triticale is being evaluated as a substitute for corn in animal feed and as a forage crop for Florida. Storage of triticale seed is difficult in Florida's hot and humid climate, and more information about the relationships between equilibrium moisture content (EMC) and equilibrium relative humidity (ERH) at constant temperature (sorption isotherms) of triticale is needed to develop improved storage methods. Therefore, the primary research objective was to measure the EMC for triticale seed at different ERH values at three different constant temperatures (5°C, 23°C, and 35°C) using six desiccation jars containing different saturated salt concentrations. The secondary objective was to determine the best fit equation describing these relati
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
This paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show MoreThis paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.