In this paper,we estimate the parameters and related probability functions, survival function, cumulative distribution function , hazard function(failure rate) and failure (death) probability function(pdf) for two parameters Birnbaum-Saunders distribution which is fitting the complete data for the patients of lymph glands cancer. Estimating the parameters (shape and scale) using (maximum likelihood , regression quantile and shrinkage) methods and then compute the value of mentioned related probability functions depending on sample from real data which describe the duration of survivor for patients who suffer from the lymph glands cancer based on diagnosis of disease or the inter of patients in a hospital for period of three years ( start with 2010 to the end of 2012) .Calculating and estimating all previous probability functions , then comparing the numerical estimation by using statistical indicators mean squares error and mean absolute percentage error between the three considered estimation methods with respect to survival function. Concluding that, the survival function for the lymph glands cancer by using shrinkage method is the best.
This paper is concerned with preliminary test single stage shrinkage estimators for the mean (q) of normal distribution with known variance s2 when a prior estimate (q0) of the actule value (q) is available, using specifying shrinkage weight factor y( ) as well as pre-test region (R). Expressions for the Bias, Mean Squared Error [MSE( )] and Relative Efficiency [R.Eff.( )] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants including in these expressions. Comparisons between suggested estimators with respect to usual estimators in the sense of Relative Efficiency are given. Furthermore, comparisons with the earlier existi
... Show MoreThis paper presents a statistical study for a suitable distribution of rainfall in the provinces of Iraq
Using two types of distributions for the period (2005-2015). The researcher suggested log normal distribution, Mixed exponential distribution of each rovince were tested with the distributions to determine the optimal distribution of rainfall in Iraq. The distribution will be selected on the basis of minimum standards produced some goodness of fit tests, which are to determine
Akaike (CAIC), Bayesian Akaike (BIC), Akaike (AIC). It has been applied to distributions to find the right distribution of the data of rainfall in the provinces of Iraq was used (maximu
... Show MoreIn this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show MoreAbstract: Lymphoproliferative Disorders (LPDs) are a group of neoplasms affecting various cells within lymphoid system. Each type has different treatment a..70619
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThis study was performed at Nuclear Radiation Hospital in Baghdad for the period from
January 2011 to May 2011. 44 Blood samples were collected from patients suffered lung and
bladder cancer and 24 samples as healthy control individuals.
Routine liver functions tests were studied by measuring S.GPT, S.GOT and Kidney
function was evaluated by estimation of blood urea and creatinine in serum samples of
individuals studied.
It was observed that the incidence of lung and bladder cancer was higher in males than
females patients ( male 81.82 %, 72.73%, female18 .18%, 27.27% respectively).
Insignificant difference was noted among age of lung and bladder cancer patients
compared with control group. The results
Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show More