This paper is concerned with preliminary test single stage shrinkage estimators for the mean (q) of normal distribution with known variance s2 when a prior estimate (q0) of the actule value (q) is available, using specifying shrinkage weight factor y( ) as well as pre-test region (R). Expressions for the Bias, Mean Squared Error [MSE( )] and Relative Efficiency [R.Eff.( )] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants including in these expressions. Comparisons between suggested estimators with respect to usual estimators in the sense of Relative Efficiency are given. Furthermore, comparisons with the earlier existing works are drawn to shown the usefulness of the proposed estimators.
In this paper, preliminary test Shrinkage estimator have been considered for estimating the shape parameter α of pareto distribution when the scale parameter equal to the smallest loss and when a prior estimate α0 of α is available as initial value from the past experiences or from quaintance cases. The proposed estimator is shown to have a smaller mean squared error in a region around α0 when comparison with usual and existing estimators.
This paper is concerned with preliminary test double stage shrinkage estimators to estimate the variance (s2) of normal distribution when a prior estimate of the actual value (s2) is a available when the mean is unknown , using specifying shrinkage weight factors y(×) in addition to pre-test region (R).
Expressions for the Bias, Mean squared error [MSE (×)], Relative Efficiency [R.EFF (×)], Expected sample size [E(n/s2)] and percentage of overall sample saved of proposed estimator were derived. Numerical results (using MathCAD program) and conclusions are drawn about selection of different constants including in the me
... Show MoreThis paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
This paper includes the estimation of the scale parameter of weighted Rayleigh distribution using well-known methods of estimation (classical and Bayesian). The proposed estimators were compared using Monte Carlo simulation based on mean squared error (MSE) criteria. Then, all the results of simulation and comparisons were demonstrated in tables.