In this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improvement for WSLE method, depends on the value for the Forgetting Factor parameter (α),which haave value less than one(i.e. 1) ( α< ). The estimate is improved for large value for parameterα exactly at 0.99 α= .Finally, we used the estimation methods (LDR&WLSE) for real data.
The extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100˚C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6:1 ml: g amount of water to eucalyptus leaves Ratio.
A 5-traverse 2D resistivity survey and 20 Vertical Electrical Sounding (VES) points were carried out on Ile Epo Dump Site with a view to inferring the extent of migration of leachate plumes in the subsurface for possible contamination of groundwater. The surveys were carried out with Omega model resistivity meter. The Schlumberger configuration was employed for the VES while Wenner configuration was employed for the 2D resistivity survey (Constant Separation Techniques). The obtained VES and CST data were interpreted using WinResist and DIPRO respectively. The integrated results revealed three to four geo-electrically polluted materials as highly saturated fills (15 Ωm, 1.9 – 27.4m), saturated fills (15 - 30 Ωm, 3.6 – 29.9m) and un
... Show MoreThis research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show MoreThis work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
This paper presents a statistical study for a suitable distribution of rainfall in the provinces of Iraq
Using two types of distributions for the period (2005-2015). The researcher suggested log normal distribution, Mixed exponential distribution of each rovince were tested with the distributions to determine the optimal distribution of rainfall in Iraq. The distribution will be selected on the basis of minimum standards produced some goodness of fit tests, which are to determine
Akaike (CAIC), Bayesian Akaike (BIC), Akaike (AIC). It has been applied to distributions to find the right distribution of the data of rainfall in the provinces of Iraq was used (maximu
... Show MoreAromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.
This paper is concerned with preliminary test single stage shrinkage estimators for the mean (q) of normal distribution with known variance s2 when a prior estimate (q0) of the actule value (q) is available, using specifying shrinkage weight factor y( ) as well as pre-test region (R). Expressions for the Bias, Mean Squared Error [MSE( )] and Relative Efficiency [R.Eff.( )] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants including in these expressions. Comparisons between suggested estimators with respect to usual estimators in the sense of Relative Efficiency are given. Furthermore, comparisons with the earlier existi
... Show MoreThe Synthesis of yttrium oxide nanoparticles have been achieved via calcination
of yttrium hydroxide produced from the reaction of aqueous solutions of yttrium
nitrate and sodium hydroxide at pH = 13 using hydrothermal and hydrothermal
microwave methods. Effect of heat treatment of the resulted yttrium hydroxide
powder on the morphology and crystallinity of the resulting oxide was studied at
calcination 500, 700 and 1000°C to obtain. The resulted products were
characterized by means of X-ray diffraction (XRD), scanning electron microscope
(SEM), atomic force microscope (AFM), Fourier transform infrared spectrometer
(FTIR) and thermal analyses (TG).
The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter
... Show More