In this paper we obtain some statistical approximation results for a general class of maxproduct operators including the paused linear positive operators.
In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
The relation between faithful, finitely generated, separated acts and the one-to-one operators was investigated, and the associated S-act of coshT and its attributes have been examined. In this paper, we proved for any bounded Linear operators T, VcoshT is faithful and separated S-act, and if a Banach space V is finite-dimensional, VcoshT is infinitely generated.
The aim of this paper is to prove some results for equivalence of moduli of smoothnes in approximation theory , we used a"non uniform" modulus of smoothness and the weighted Ditzian –Totik moduli of smoothness in by spline functions ,several results are obtained .For example , it shown that ,for any the inequality , is satisfied ,finally, similar result for chebyshev partition and weighted Ditzian –Totik moduli of smoothness are also obtained.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
Let be an infinite dimensional separable complex Hilbert space and let , where is the Banach algebra of all bounded linear operators on . In this paper we prove the following results. If is a operator, then 1. is a hypercyclic operator if and only if D and for every hyperinvariant subspace of . 2. If is a pure, then is a countably hypercyclic operator if and only if and for every hyperinvariant subspace of . 3. has a bounded set with dense orbit if and only if for every hyperinvariant subspace of , .
In this paper we show that the function , () p fLI α ∈ ,0<p<1 where I=[-1,1] can be approximated by an algebraic polynomial with an error not exceeding , 1 ( , , ) kp ft n ϕ αω where
,
1 ( , , ) kp ft n ϕ αω is the Ditizian–Totik modules of smoothness of unbounded function in , () p LI
In this paper, a statistical analysis compared the pattern of distribution of spending on various goods and services and to identify the main factors that control the rates of spending between the survey of social and economic status of families in Iraq for the year (2007) and the survey of Iraq knowledge net work (IKN) for the year (2011), which were carried out by the Central Bureau of Statistics through the use of factor analysis and cluster analysis, using the ready statistical software package ready (SPSS) to gain access to the results.