We have studied the effect of gamma irradiation on the optical transmission, absorbance, absorption coefficient, and Urbach energy for (PMMA- doped red methyl) film deposited by using solvent casting method .The optical transmission (T %) in the wavelength range (1901100 ) nm of films was measured , it was seen that all the parameters were affected by gamma irradiation.
Polymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction of (4% for AL
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreThe present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
In this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<
In this research we studied the structural and optical properties of (CdTe) thin films which have been prepared by thermal evaporation deposition method on the glass substrate at R.T with thickness (450  25) nm., as a function of doping ratio with copper element in (1,3,5) % rate .The structure measurement by X-ray diffraction (XRD) analyses shows that the single phase of (CdTe) with polycrystalline structure with a preferred orientation [111]. The optical measurement shows that the (CdTe) films have a direct energy gap, and they decrease with the increase of doping ratio reaching to 5% . The optical constants are investigated and calculated, such as absorpti
... Show MoreColloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t
... Show MoreIn this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MoreThe study effect Graphene on optical and electrical properties of glass prepared on glass substrates using sol–gel dip-coating technique. The deposited film of about (60-100±5%) nm thick. Optical and electrical properties of the films were studied under different preparation conditions, such as graphene concentration of 2, 4, 6 and 8 wt%. The results show that the optical band gap for glass-graphene films decreasing after adding the graphene. Calculated optical constants, such as transmittance, extinction coefficient are changing after adding graphene. The structural morphology and composition of elements for the samples have been demonstrated using SEM and EDX. The electrical properties of films include DC electrical conductivity; we
... Show MoreIn this work, SnO2 and (SnO2)1-x(ZnO)x composite thin films with different ZnO atomic ratios (x=0, 5, 10, 15 and 20%) were prepared by pulsed laser deposition technique on clean glass substrates at room temperature without any treatment. The deposited thin films were characterized by x-ray diffraction atomic force microscope and UV-visible spectrophotometer to study the effect of the ZnO atomic ratio on their structural, morphological and optical properties. It was found that the crystallinety and the crystalline size vary according to ZnO atomic ratio. The surface appeared as longitudinal structures which was convert to spherical shapes with increasing ZnO atomic ratio. The optical trans
... Show MoreThe doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3