Preferred Language
Articles
/
jih-415
Structural and Electrical Properties of InSb Films Prepared By Flash Evaporation Technique

 Indium antimony (InSb) alloy were prepared successfully. The InSb films were prepared by flash thermal evaporation technique on glass and Si p-type substrate at various substrate temperatures (Ts= 423,448,473, and 498 K).       The compounds concentrations for prepared alloy were examined by using Atomic Absorption Spectroscopy (AAS) and X-ray fluorescence (XRF). The structure of prepared InSb alloy and films deposited at various Ts were examined by X-ray diffraction (XRD).It was found that all prepared InSb alloy and films were polycrystalline with (111) preferential direction .       The electrical properties of the films are studied with the varying Ts. It is found that the electrical conductivity of the films increased with  the increase of Ts, while the activation energies decreased. The Hall Effect measurements showed that the type of all prepared films was n-type .The charge carrier concentration decreased with the increase Ts whereas, the carriers mobility   increased. The drift velocity, mean free path and life time of the deposited films for all the range of Ts have been determined. From the measurements of the four point probe methods, the sheet conductivity increased with the increase of Ts.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Study of optical properties of (PMMA) doped by methyl red and methyl blue films

The effect of doping by methyl red and methyl blue on the absorption spectra and the optical energy gap of poly (methyl methacrylat) PMMA film have been studied. The optical transmission (T%) in the wavelength range 190-900 nm for films deposited by using solvent casting method were measured. The Absorptance data reveals that the doping affected the absorption edge as a red and blue shift in its values. The films show indirect allowed interband transitions that influenced by the doping. Optical constants; refractive index, extinction coefficient and real and imaginary part of dielectric constant were calculated and correlated with doping.

Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Tue Nov 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Highly-Pure Nanostructured Metal Oxide Multilayer Structure Prepared by DC Reactive Magnetron Sputtering Technique

In this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 29 2018
Journal Name
Iraqi Journal Of Science
In2O3-ZnO pyramids like structure prepared by Spray-pyrolysis Technique for gas Sensing Applications

Polycrystalline Indium oxide (In2O3) and Indium oxide-zinc oxide (IZO) thin films mixed with 10% ZnO content were prepared by spray-pyrolysis technique at relatively low substrate temperature (150 ˚C).Field emission scanning electron microscope (FE-SEM) shows that the nanostructure at 10% ZnO content has pyramid like structure. The hall effect measurements show that the prepared samples have n-type charge carriers .The films were examined as gas sensor against H2S gas at different operating temperatures (200, 250 and 300) oC, and it was found that the IZO sample a good sensitivity to H2S gas ~ 572 % at operating temperature 200 oC, with relatively fast response time of 19 s and recovery time of 17

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 02 2020
Journal Name
Iraqi Journal Of Applied Physics
Characterization of Multilayer Highly-Pure Metal Oxide Structures Prepared by DC Reactive Magnetron Sputtering Technique

In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.

View Publication Preview PDF
Publication Date
Tue Dec 13 2022
Journal Name
Emergent Materials
Spectroscopic characteristics of highly pure metal oxide nanostructures prepared by DC reactive magnetron sputtering technique

In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th

... Show More
Scopus (22)
Crossref (8)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
Fabrication of Cr2O3: ZnO Nanostructure Thin Film Prepared by PLD Technique as NH3 Gas Sensor

     Chromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3

... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Chemical Methodologies
Scopus (7)
Scopus
Publication Date
Wed Apr 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Optical Properties of Obliquely Evaporated Manganese Films

   The Manganese (Mn) thin films of obliquely and normal deposited were prepared by using thermal evaporation method at pressure 10-5 torr on glass substrate at room temperature. The optical properties of normal and obliquely deposited films are studied and also the effect of deposition angle on these properties. The deposition angle has great influence on the increase of the absorbance, absorption coefficient, extinction coefficient and imaginary dielectric constant and the decrease of the transmittance, reflectance, refractive index and real dielectric constant.
 

View Publication Preview PDF