Preferred Language
Articles
/
jih-396
Influence Activation Function in Approximate Periodic Functions Using Neural Networks
...Show More Authors

The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks.             In all algorithms, the gradient of the performance function (energy function) is used to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 04 2013
Journal Name
Iraqi Journal Of Science
Influence of the Beam Size Radiation on the Depth Dose by Using 60Co
...Show More Authors

Radiotherapy is medical use of ionizing radiation, and commonly applied to the cancerous tumor because of its ability to control cell growth. The amount of radiation used in photon radiation therapy called dose (measured in grey unit), which depend on the type and stage of cancer being treated. In our work, we studied the dose distribution given to the tumor at different depths (zero-20 cm) treated with different field size (4×4- 23×23 cm). Results show that the deeper treated area has less dose rate at the same beam quality and quantity. Also it has been noted increasing in the field increasing in the depth dose at the same depth even if the radiation energy is constant. Increasing in radiation dose attributed to the scattere

... Show More
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network
...Show More Authors

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Evaluation of the Human Pulmonary Activation-Regulated Chemokine (CCL18/PARC) and Alkaline Phosphatase (ALP) Levels in Iraqi Patients with Rheumatoid Arthritis
...Show More Authors

Rheumatoid arthritis (RA) is one of the chronic inflammatory autoimmune diseases which occurs as a result of unknown reasons. This study was conducted at Baghdad Teaching Hospital/City of Medicine, where blood samples were taken from 60 Iraqi patients with RA (49 females and 11 males) and these patients were matched by age and sex with 20 healthy controls (16 females and 4 males). Patients with RA were diagnosed by a consultant rheumatologist according to ACR / EULAR criteria in 2010. In this study the patients were divided into four groups as follows; the first group consisted of 12 patients treated with methotrexate (MTX), the second group consisted of 10 patients treated with etanercept, the third group consisted of 18 patients treate

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design Feed Forward Neural Network to Determine Doses of the Decongestant for Cold Pills
...Show More Authors

The aim of this paper is to design feed forward neural network to determine the effects of
cold pills and cascades from simulation the problem to system of first order initial value
problem. This problem is typical of the many models of the passage of medication throughout
the body. Designer model is an important part of the process by which dosage levels are set.
A critical factor is the need to keep the levels of medication high enough to be effective, but
not so high that they are dangerous.

View Publication Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimate Kernel Ridge Regression Function in Multiple Regression
...Show More Authors

             In general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models  precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Using the artificial TABU algorithm to estimate the semi-parametric regression function with measurement errors
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.

Scopus Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Determine the optimal policy for the function of Pareto distribution reliability estimated using dynamic programming
...Show More Authors

The goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through  finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy

View Publication
Crossref
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Reducing False Notification in Identifying Malicious Application Programming Interface(API) to Detect Malwares Using Artificial Neural Network with Discriminant Analysis
...Show More Authors

 This paper argues the accuracy of behavior based detection systems, in which the Application Programming Interfaces (API) calls are analyzed and monitored. The work identifies the problems that affecting the accuracy of such detection models. The work was extracted (4744) API call through analyzing. The new approach provides an accurate discriminator and can reveal malicious API in PE malware up to 83.2%. Results of this work evaluated with Discriminant Analysis

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Reducing False Notification in Identifying Malicious Application Programming Interface(API) to Detect Malwares Using Artificial Neural Network with Discriminant Analysis
...Show More Authors