The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks. In all algorithms, the gradient of the performance function (energy function) is used to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training.
In this theoretical paper and depending on the optimization synthesis method for electron magnetic lenses a theoretical computational investigation was carried out to calculate the Resolving Power for the symmetrical double pole piece magnetic lenses, under the absence of magnetic saturation, operated by the mode of telescopic operation by using symmetrical magnetic field for some analytical functions well-known in electron optics such as Glaser’s Bell-shaped model, Grivet-Lenz model, Gaussian field model and Hyperbolic tangent field model. This work can be extended further by using the same or other models for asymmetrical or symmetrical axial magnetic field
... Show MoreIt is so much noticeable that initialization of architectural parameters has a great impact on whole learnability stream so that knowing mathematical properties of dataset results in providing neural network architecture a better expressivity and capacity. In this paper, five random samples of the Volve field dataset were taken. Then a training set was specified and the persistent homology of the dataset was calculated to show impact of data complexity on selection of multilayer perceptron regressor (MLPR) architecture. By using the proposed method that provides a well-rounded strategy to compute data complexity. Our method is a compound algorithm composed of the t-SNE method, alpha-complexity algorithm, and a persistence barcod
... Show MoreRecently, the increasing demand to transfer data through the Internet has pushed the Internet infrastructure to the nal edge of the ability of these networks. This high demand causes a deciency of rapid response to emergencies and disasters to control or reduce the devastating effects of these disasters. As one of the main cornerstones to address the data trafc forwarding issue, the Internet networks need to impose the highest priority on the special networks: Security, Health, and Emergency (SHE) data trafc. These networks work in closed and private domains to serve a group of users for specic tasks. Our novel proposed network ow priority management based on ML and SDN fullls high control to give the required ow priority to SHE dat
... Show MoreThe aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.
This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show MoreIn this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
In this paper, we introduce a new type of functions in bitopological spaces, namely, (1,2)*-proper functions. Also, we study the basic properties and characterizations of these functions . One of the most important of equivalent definitions to the (1,2)*-proper functions is given by using (1,2)*-cluster points of filters . Moreover we define and study (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions and we give an example when the converse may not be true .
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreRadiotherapy is medical use of ionizing radiation, and commonly applied to the
cancerous tumor because of its ability to control cell growth.
The amount of radiation used in photon radiation therapy called dose (measured
in grey unit), which depend on the type and stage of cancer being treated.
In our work, we studied the dose distribution given to the tumor at different
depths (zero-20 cm) treated with different field size (4×4- 23×23 cm).
Results show that the deeper treated area has less dose rate at the same beam
quality and quantity. Also it has been noted increasing in the field increasing in the
depth dose at the same depth even if the radiation energy is constant. Increasing in
radiation dose attribut