This paper determined the difference between the first image of the natural and the second infected image by using logic gates. The proposed algorithm was applied in the first time with binary image, the second time in the gray image, and in the third time in the color image. At start of proposed algorithm the process images by applying convolution to extended images with zero to obtain more vision and features then enhancements images by Edge detection filter (laplacion operator) and smoothing images by using mean filter ,In order to determine the change between the original image and the injury the logic gates applied specially X-OR gates . Applying the technique for tooth decay through this comparison can locate injury, this difference may be tooth decay or a broken bone , cancerous cells or infected gums, The X-OR gate is the best gates uses in this technique. Simulation program using visual basic has been in order to determine final results.
The nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreGypsum Plaster is an important building materials, and because of the availabilty of its raw materials. In this research the effect of various additives on the properties of plaster was studied , like Polyvinyl Acetate, Furfural, Fumed Silica at different rate of addition and two types of fibers, Carbon Fiber and Polypropylene Fiber to the plaster at a different volumetric rate. It was found that after analysis of the results the use of Furfural as an additive to plaster by 2.5% is the optimum ratio of addition to that it improved the flexural Strength by 3.18%.
When using Polyvinyl Acetate it was found that the ratio of the additive 2% is the optimum ratio of addition to the plaster, because it improved the value of the flexural stre
Speech is the first invented way of communication that human used age before the invention of writing. In this paper, proposed method for speech analyses to extract features by using multiwavelet Transform (Repeated Row Preprocessing).The proposed system depends on the Euclidian differences of the coefficients of the multiwavelet Transform to determine the beast features of speech recognition. Each sample value in the reference file is computed by taking the average value of four samples for the same data (four speakers for the same phoneme). The result of the input data to every frame value in the reference file using the Euclidian distance to determine the frame with the minimum distance is said to be the "Best Match". Simulatio
... Show MoreThis research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel and give the sound amount of smoothing .
We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima
... Show More