Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each f ∈ Hom(N,M), f ≠0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules
Let
Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreThe aim of this research is to examine the relationship between entrepreneurial mindset and aspiration and small business performance Baghdad, Iraq. This study proposed a quantitative analysis in which entrepreneurial mindset and aspiration is a critical success factor of small business in Iraq. The method employed in the collection of data was by the means of self-administered questionnaire which was filled and completed by small business owners randomly selected from a sampling frame of registered small businesses. The questionnaire was adapted from the study of Davis, Halls & Mayer (2015) and Abdel-Maksoud, Asada & Nakagawa (2008) which was used to measure entrepreneurial mindset and aspiration using a ten items scale and small business
... Show MoreLet R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
The -s-extending modules will be purpose of this paper, a module M is -s-extending if each submodule in M is essential in submodule has a supplement that is direct summand. Initially, we give relation between this concept with weakly supplement extending modules and -supplemented modules. In fact, we gives the following implications:
Lifting modules -supplemented modules -s-extending modules weakly supplement extending modules.
It is also we give examples show that, the converse of this result is not true. Moreover, we study when the converse of this result is true.