Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a very high accuracy and is quite robust. ESGD-SVM is used to analyze the heart disease dataset downloaded from Harvard Dataverse. The entire analysis was performed using the program R version 4.3.
The majority of systems dealing with natural language processing (NLP) and artificial intelligence (AI) can assist in making automated and automatically-supported decisions. However, these systems may face challenges and difficulties or find it confusing to identify the required information (characterization) for eliciting a decision by extracting or summarizing relevant information from large text documents or colossal content. When obtaining these documents online, for instance from social networking or social media, these sites undergo a remarkable increase in the textual content. The main objective of the present study is to conduct a survey and show the latest developments about the implementation of text-mining techniqu
... Show MoreAbstract
The research aims to measure the level of critical thinking skills among students of A’Sharqiah University in the Sultanate of Oman, as well as identify the level of their availability based on the variables: gender, academic level, school year, cumulative average, and general diploma / high school ratio. The researchers used the descriptive approach. To achieve the objectives of the study, they used The California Test for Critical Thinking Skills Picture (A) after evaluation (Farraj, 2006). It was applied to a sample of (487) students from A’sharqiah University. The results of the study found that the critical thinking skills of A’sharqiah University students are below the educationally acceptabl
... Show MoreTwo simple and sensitive spectrophotometric methods are proposed for the determination of amitriptyline in its pure form and in tablets. The first method is based on the formation of charge- transfer complex between amitriptyline as n-donor and tetracyano-ethylene (TCNE) as πacceptor. The product exhibit absorbance maximum at 470 nm in acetonitrile solvent (pH =9.0 ) . In the second method the absorbance of the ion- pair complex, which is formed between the soughted drug and bromocresol green (BCG), was measured at 415 nm at ( pH=3.5) . In addition to classical univariate optimization, modified simplex method (MSM) was applied in the optimization of the variable affecting the color producing reaction by a geometric simple
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreThe map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show MoreReservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreThe present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea
... Show MoreThe analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.
Because the studying of time series can get by building, analysis the models and then forecasting gives the priority for the practicing in different fields, therefore the identification and selection of the model is of great importance in spite of its difficulties.
The selection of a standard methods has the ability for estimation the errors in the estimated the parameters for the model, and there will be a balance between the suitability and the simplicity of the model.
In the analysis of d
... Show MoreThe reservoir characteristics of the Pre-Santonian Eze-Aku sandstone were assessed using an integrated thin section petrography and SEM Back-Scattered Electron (BSE) imaging methods. Fresh outcrop data were collected in the Afikpo area (SE Nigeria). Twenty-eight representative samples from the different localities were analysed to obtain mineralogical and petrographical datasets germane for reservoir characterisation. Thin section petrography indicates that the sandstones are medium-grained, have an average Q90F10L0 modal composition, and are classified as mainly sub-arkose. The sandstones on SEM reveal the presence of cement in the form of quartz overgrowths, authigenic clays and feldspar. From epoxy-sta
... Show More