Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a very high accuracy and is quite robust. ESGD-SVM is used to analyze the heart disease dataset downloaded from Harvard Dataverse. The entire analysis was performed using the program R version 4.3.
Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show MoreRumors are typically described as remarks whose true value is unknown. A rumor on social media has the potential to spread erroneous information to a large group of individuals. Those false facts will influence decision-making in a variety of societies. In online social media, where enormous amounts of information are simply distributed over a large network of sources with unverified authority, detecting rumors is critical. This research proposes that rumor detection be done using Natural Language Processing (NLP) tools as well as six distinct Machine Learning (ML) methods (Nave Bayes (NB), random forest (RF), K-nearest neighbor (KNN), Logistic Regression (LR), Stochastic Gradient Descent (SGD) and Decision Tree (
... Show More<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t
... Show MoreThis paper explores a fuzzy-logic based speed controller of an interior permanent magnet synchronous motor (IPMSM) drive based on vector control. PI controllers were mostly used in a speed control loop based field oriented control of an IPMSM. The fundamentals of fuzzy logic algorithms as related to drive control applications are illustrated. A complete comparison between two tuning algorithms of the classical PI controller and the fuzzy PI controller is explained. A simplified fuzzy logic controller (FLC) for the IPMSM drive has been found to maintain high performance standards with a much simpler and less computation implementation. The Matlab simulink results have been given for different mechanical operating conditions. The simulated
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
The graphic privacy feature is one of the most important specifications for the existence of any type of design achievements alike, which is one of the graphic products with its multiple data, and from here the current research investigates the graphic privacy of vector graphics design with all its technical descriptions and concepts associated with it and the possibility of achieving it to the best that it should be from Where its formal structure in children's publications, where the structural structure of the current research came from the first chapter, which contained the research problem, which came according to the following question: What is the graphic privacy in the design of vector graphics in children's publ
... Show MoreThe extrasolar planets in the vicinity of stars are expected to be bright enough
and are very difficult to be observed by direct detection. The problem is attributed to
the side loops of the star that created due to the telescope diffraction processing.
Several methods have been suggested in the literatures are being capable to detect
exoplanet at a separation angle of 4λ/D and at a contrast ratio of 10-10. These
methods are more than one parameter function and imposing limitations on the inner
working distance. New simple method based on a circular aperture combined with a
third power Gaussian function is suggested. The parameters of this function are then
optimized based on obtaining a minimum inner working dis
In this paper the research represents an attempt of expansion in using the parametric and non-parametric estimators to estimate the median effective dose ( ED50 ) in the quintal bioassay and comparing between these methods . We have Chosen three estimators for Comparison. The first estimator is
( Spearman-Karber ) and the second estimator is ( Moving Average ) and The Third estimator is ( Extreme Effective Dose ) . We used a minimize Chi-square as a parametric method. We made a Comparison for these estimators by calculating the mean square error of (ED50) for each one of them and comparing it with the optimal the mean square
The Non-Photorealistic Rendering (NPR) demands are increased with the development of electronic devices. This paper presents a new model for a cartooning system, as an essential category of the NPR. It is used the concept of vector quantization and Logarithmic Image Processing (LIP). An enhancement of Kekre Median Codebook Generation (KMCG) algorithm has been proposed and used by the system. Several metrics utilized to evaluate the time and quality of the system. The results showed that the proposed system reduced the time of cartoon production. Additionally, it enhanced the quality of several aspects like smoothing, color reduction, and brightness.
Abstract:
Background: The most frequent movement issue seen in clinical practice is tremors. It is known as repetitive, involuntary oscillations. The diagnostic process for tremor patients can be time-consuming and complicated, as the identification of “Essential Tremor” and its distinction from other types of tremor.
Objectives: This study aimed to describe the electrophysiological findings of essential, enhanced physiological, and physiological tremors, using surface electromyography and an accelerometer.
Patients and Methods: The study included 24 patients with essential tremors, 10 patients with enhanced physiological tremors, and 10 patient
... Show More