Support Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a very high accuracy and is quite robust. ESGD-SVM is used to analyze the heart disease dataset downloaded from Harvard Dataverse. The entire analysis was performed using the program R version 4.3.
The non static chain is always the problem of static analysis so that explained some of theoretical work, the properties of statistical regression analysis to lose when using strings in statistic and gives the slope of an imaginary relation under consideration. chain is not static can become static by adding variable time to the multivariate analysis the factors to remove the general trend as well as variable placebo seasons to remove the effect of seasonal .convert the data to form exponential or logarithmic , in addition to using the difference repeated d is said in this case it integrated class d. Where the research contained in the theoretical side in parts in the first part the research methodology ha
... Show MoreThe growth of social media is now utilized all over the world. In the past several years social media is used to communicate between person for information sharing and entertainment but now social media is also used for the hiring. This work collects data through questionnaire and online dataset on the recruitment process for three social media i.e. Facebook, Twitter, and LinkedIn. Pythagorean Fuzzy Relation (PFR) is an expansion of both Fuzzy Relationship and Fuzzy Intuitionist Relationship. The Pythagorean fuzzy set is a modern conceptual structure with greater capacity to deal with imprecision rooted in decision making. So we used this technique to identify a social media containing more number of positive respondents in recrui
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreThe electrode in the microbial fuel cell has a significant effect on cell performance. The treatment of the electrode is a crucial step to make the electrode surface more habitable for bacteria growth, thus, increases the power production as well as waste treatment. In the current study, two graphite electrodes were treated by a microwave. The first electrode was treated with 100W microwave energy, while the second one was treated with 600W microwave energy. There is a significant enhancement in the surface of the graphite anode after the pretreatment process. The results show an increase in the power density from 10 mW/m2 to 15 mW/m2 with 100w treatment and to 13.47 mW/m2 with 600w treatment. An organic
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
Background: Zinc is involved in a variety of
metabolic processes and it has a well known
antioxidant activity, so the measurement of its serum
level can have a special value in several diseases.
Objectives: The study is designed to determine the
serum zinc level in heart failure patients and to
compare it with that of healthy individuals and to
study the significance of the results obtained.
Methods: Atomic absorption spectrometer
technique was used to determine serum zinc level in
fifty heart failure patients and fifty healthy individuals
who were age and sex matched.
Results: The mean serum zinc level in healthy
individuals was about 45.5% greater than that of heart
failure patients. This diffe
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreThis paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and ampliï¬cation error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientiï¬c literature.
Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-
... Show MoreIn this paper a measure of linear local dependence has been used between two
random variables and a study is conducted for the properties of this measure where
two examples of bivariate probability distributions has been considered, which are
bivariate Gumbel distribution and bivariate Beta-Stacy distribution, and applied on
data collected by using a questionnaire conducted to study the reasons for the
increase of application in private collages in Iraq. Five elements has been considered
as random variables and the dependence has been measured between every two
elements to estimate how correlated these elements are and their effect on the
application in private collages of Iraq generally and Baghdad specifically.<