A new family of distribution named Double-Exponential-X family is proposed. The proposed family is generated from the double exponential distribution. The forms of the probability densities and hazard functions of two distinct subfamilies of the proposed family are examined and reported. Generalproperties such as moment, survival, order statistics, probability weighted moments and quartile functions of the models are investigated. A sub family of the developed family of double –Exponential-X family of the distribution known as double-Exponential-Pareto distribution was used to fit a real life data on the use of antiretroviral drugs. Molecular simulation of efficacy of antiretroviral drugs is conducted to evaluate the performance of the model. The models were tested using some models diagnostic tests and it was revealed that the proposed model was better than the ones proposed before it from the same family and also, stochastic dominance method was used to affirm the best antiretroviral drugs used in the study.
Abstract
Objective: The purpose of this study is to investigate the family-centered care health services of family-provider partnership in Baghdad/ Iraq.
Methods: A descriptive cross-sectional study is conducted in Baghdad Province. A cluster samples of 440 clients who review family centered care for the purpose of health services. The instruments underlying the study phenomenon deals with client's socio-demographic characteristics and family centered care questionnaire which include (partnership related to decision-making team, supporting the family as the constant in the child’s life, family-to-family and peer support and supporting transition to adulthood). The relia
... Show MoreHigh temperature superconductors materials with composition Bi1.6-xSbxPb0.4Sr2Ca2-yCdyCu3OZ (x = 0, 0.1, 0.2 and 0.3) and (y = 0.01 and 0.02), were prepared by using the chemical reaction in solid-state ways, and test influence of partial replacement of Bi and Ca with Sb and Cd respectively on the superconducting properties, all samples were sintered at the same temperature (850 oC) and for the same time (195 h). The structural analysis of the prepared samples was carried out using X-ray diffraction (XRD) measurements performed at room temperature, scanning electron microscope (SEM) and dc electrical resistivity was measured as a function of temperature. It was found that the sample prepared by partial substitution of Sb at ratio (x= 0.2
... Show MoreAlloys of InxSe1-x were prepared by quenching technique with
different In content (x=10, 20, 30, and 40). Thin films of these alloys
were prepared using thermal evaporation technique under vacuum of
10-5 mbar on glass, at room temperature R.T with different
thicknesses (t=300, 500 and 700 nm). The X–ray diffraction
measurement for bulk InxSe1-x showed that all alloys have
polycrystalline structures and the peaks for x=10 identical with Se,
while for x=20, 30 and 40 were identical with the Se and InSe
standard peaks. The diffraction patterns of InxSe1-x thin film show
that with low In content (x=10, and 20) samples have semi
crystalline structure, The increase of indium content to x=30
decreases degree o
In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.
The present computational work is focused on investigating some properties of Gabor lens. The Gabor lens under consideration consists of two fields, electrostatic and magnetic. The Glaser field model is assumed to represent each field along the optical axis. Under zero magnification condition the trajectory of charged particles along the axis of Gabor lens has been computed. The results have shown that a lens of short focal length and hence high refractive power can be achieved
This paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results.
The ground state proton, neutron and matter densities of exotic 11Be and 15C nuclei are studied by means of the TFSM and BCM. In TFSM, the calculations are based on using different model spaces for the core and the valence (halo) neutron. Besides single particle harmonic oscillator wave functions are employed with two different size parameters Bc and Bv. In BCM, the halo nucleus is considered as a composite projectile consisting of core and valence clusters bounded in a state of relative motion. The internal densities of the clusters are described by single particle Gaussian wave functions.
Elastic electron scattering proton f
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show More