Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever is a Prime Ideal For proper submodule N of B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of prime module and quasi-semiprime module are equavelant.The codition of anti-hopfain make Quasi-Prime is Quasi-Semiprime A-module.Whenever B is Cyclic,Coprime C-Module,Where C be ring each ideal is semiprim,imlies Quasi-Prime,Quasi-SimePrime and annCB is Prime ideal are equaivelant.If F be eipemorphism from B1 B2 ,Whenever B1 is Quasi-SemiPrime Module,implies B2 is Quasi-semiprime A-Module and the iverse Image Of Quasi-Semiprime Is Quasi-SemiPrime A-Module.
Single-input Multiple-output Signals Third-order Active-R Filter for different Circuit Merit Factor Q Configuration is proposed. This paper discusses a new configuration to realize third-order low pass, band pass and high pass. The presented circuit uses Single-input Multiple-output signals, OP-AMP and passive components. This filter is useful for high frequency operation, monolithic IC implementation and it is easy to design .This circuit gives three filter functions low-pass, high-pass and band-pass. This filter circuit can be used for different merit factor (Q) with high pass band gain. This gives better stop-band attenuation and sharper cut-off at the edge of the pass-band. Thus the response shows wider pass-band. The Ideal value of thi
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreLet be a right module over a ring with identity. The semisecond submodules are studied in this paper. A nonzero submodule of is called semisecond if for each . More information and characterizations about this concept is provided in our work.
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreLet R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
Let R be a commutative ring with identity and M an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is end-ï¹-prime if for each ï¡ ïƒŽ EndR(M) and x  M, if ï¡(x)  P, then either x  P + ï¹(P) or ï¡(M) ïƒ P + ï¹(P). Some of the properties of this concept will be investigated. Some characterizations of end-ï¹-prime submodules will be given, and we show that under some assumtions prime submodules and end-ï¹-prime submodules are coincide.
Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if ï ïŽ is a coprime R-module, where ï ïŽ is a coprime R-module if for any r  R, either O  ï ïŽ ï ïŽ r or  ï ïŽ ï ïŽr . In this paper we study coprime submodules and give many properties related with this concept.
Ring theory is one of the influential branches of abstract algebra. In this field, many algebraic problems have been considered by mathematical researchers who are working in this field. However, some new concepts have been created and developed to present some algebraic structures with their properties. Rings with derivations have been studied fifty years ago, especially the relationships between the derivations and the structure of a ring. By using the notatin of derivation, many results have been obtained in the literature with different types of derivations. In this paper, the concept of the derivation theory of a ring has been considered. This study presented the definition of
Ring theory is one of the influ
... Show MoreIn this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule of an -module is called an approximaitly prime submodule of (for short app-prime submodule), if when ever , where , , implies that either or . So, an ideal of a ring is called app-prime ideal of if is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.
The main purpose of this paper is to study some results concerning reduced ring with another concepts as semiprime ring ,prime ring,essential ideal ,derivations and homomorphism ,we give some results a bout that.